N8270737

DMS-DR-2398 NASA-CR 160,851

VOLUME 2 OF 3

RESULTS OF TESTS USING A 0.03 SCALE MODEL (47-OTS) OF THE SPACE SHUTTLE INTEGRATED VEHICLE IN THE AEDC 16 FOOT TRANSONIC PROPULSION WIND TUNNEL (IA105A)

Ъy

R. H. Spangler
Rockwell International
Space Transportation System Development and Production Division

Prepared under NASA Contract Number NAS9-16283

by

Data Management Services Chrysler Huntsville Electronics Division Slidell Engineering Office New Orleans, Louisiana 70189

for

Engineering Analysis Division

Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

P41T-P1, TF470

NASA Series Number:

IA105A

Model Number:

47-OTS

Test Dates:

Sept. 8 thru 27, 1977 and Nov. 12 thru 20, 1977

Occupancy Hours:

FACILITY COORDINATOR:

John Black

ARO, Inc. PWT-16P

Arnold Engineering Development Center

Arnold AFS, TN 37389

Phone: (615) 455-2611, Ext. 7640

PROJECT ENGINEERS:

AERODYNAMIC ANALYSIS:

R. H. Spangler

Mail Code ACO7

Rockwell International

STS D&P Division

12214 Lakewood Blvd.

Downey, CA 90241

Phone: (213) 922-1463

L. P. Leblanc

Mail Code ACO7

Rockwell International

STS D&P Division

12214 Lakewood Blvd.

Downey, CA 90241

Phone: (213) 922-5369

DATA MANAGEMENT SERVICES:

Prepared by: Liaison -- S. R. Houlihan

Operations - G. W. Klug

lanager

Data Operations

Concurrence:

Data Management Services

Chrysler Huntsville Electronics Division/Slidell Engineering Office assumes no responsibility for the data presented other than display characteristics RESULTS OF TESTS USING A 0.03 SCALE MODEL (47-OTS) OF THE SPACE SHUTTLE INTEGRATED VEHICLE IN THE AEDC 16 FOOT TRANSONIC PROPULSION WIND TUNNEL (1A105A)

bу

R. H. Spangler
Rockwell International Space Transportation System
Development and Production Division

ABSTRACT

An experimental investigation (test IA105A) was conducted in the Arnold Engineering Development Center 16-foot Transonic Propulsion Wind Tunnel from September 8, 1977 through September 27, 1977 (first entry) and from November 12, 1977 through November 20, 1977 (second entry).

The objective of these tests was to obtain aerodynamic loads on all vehicle elements (orbiter, external tank and solid rocket boosters) by pressure integration and to measure loads directly by load indicators on the wing and vertical tail and elevon hinge moments.

Data were obtained in the Mach number range from 0.6 to 1.55 with Reynolds numbers per foot of 2.5 x 10^6 to 4.0 x 10^6 . The test was conducted using angle of attack sweeps at fixed sideslip angles during the first entry and sideslip sweeps at constant angle of attack during the second entry.

Angles of attack and sideslip were both within a range consistent with the trajectory dispersions with the maximum angle being dependent upon the requirements at a particular Mach number.

ABSTRACT (Concluded)

Configuration variations consisted of a series of differential inboard/ outboard elevon angle settings at zero aileron angle, with and without the Shuttle Infrared Leeside Temperature Sensor (SILTS) pod on the orbiter vertical tail.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	3
INDEX OF DATA FIGURES	5
INTRODUCTION	7
NOMENCLATURE	9
REMARKS	16
CONFIGURATIONS INVESTIGATED	19
TEST FACILITY DESCRIPTION	30
TEST PROCEDURE AND INSTRUMENTATION	33
DATA REDUCTION	37
UNCERTAINTY OF MEASUREMENTS	46
REFERENCES	48
TABLES	
I. TEST CONDITIONS II. DATA SET/RUN NUMBER COLLATION SUMMARY III. ELEVON DEFLECTION ANGLES IV. BALANCES UTILIZED V. BAD PRESSURE DATA LIST VI. ORBITER FUSELAGE SURFACE PRESSURE TAP LOCATIONS VII. WING PRESSURE TAP NUMBERS/LOCATIONS VIII. EXTERNAL TANK SURFACE PRESSURE TAP LOCATIONS IX. EXTERNAL TANK BASE PRESSURE TAP LOCATIONS X. SOLID ROCKET BOOSTER SURFACE PRESSURE TAP LOCATIONS	49 50 68 69 71 103 104 107 111 118
MODEL DATA (TYPICAL PRESSURE PLOT - FIRST ENTRY)	85 125

TABLE OF CONTENTS (Concluded)

APPENDIX Pages

TABULATED SOURCE DATA

FORCE

FIRST ENTRY NOT PRESENTED (SEE TEST PROCEDURE

AND INSTRUMENTATION)

SECOND ENTRY VOLUME I 1-678

PRESSURE (MICROFICHE ONLY)

FIRST ENTRY VOLUME II

SECOND ENTRY VOLUME III

INDEX OF MODEL FIGURES

Figure	<u>Title</u>	Page
1.	Model Axis Systems, Sign Conventions and Reference Dimensions	
•	a Avia Suatama	0.5
	a. Axis Systems b. Main Balance Transfer	85 86
	c. Vertical Tail Balance Transfer	87
	d. Wing Balance Transfer	88
	e. Elevon Deflection Sign Convention	89
	f. Wing Load Sign Convention	90
	g. Vertical Tail Load Sign Convention	91
2.	Launch Vehicle 6 Configuration	
	a. Launch Vehicle	92
	b. Orbiter 102	93
	c. External Tank - T39	94
	d. Solid Rocket Booster - S27	95
3.	Scanivalve Locations	
	a. Orbiter	96
	b. External Tank	97
	c. Solid Rocket Booster	98
4.	Orbiter Pressure Tap Locations	
	a. Orbiter Base	99
	b. Body Flap	100
	c. Vertical Tail	101
	d. Vertical Tail Balance Cavity	102
5.	Wing Pressure Tap Locations	
	a. Lower Surface	105
	b. Upper Surface	106
6.	External Tank Pressure Tap Locations	
	a. ET Station Numbers	109
	h. External Tank Base	110

INDEX OF MODEL FIGURES (Concluded)

Figure	<u>Title</u>	Page
7.	External Tank Protuberance Pressure Tap Locations	
	a. Taps 1601 → 1724	112
	b. Taps 1732 → 1759	113
	c. Taps 1760 → 1769	114
	d. Taps 1770 → 1827	115
•	e. Taps 1828 → 1857	116
	f. External Tank Protuberance Pressures - Summary	117
8.	Solid Rocket Booster Pressure Tap Locations	
	a. SRB Station Numbers	119
	b. SRB Base	120
9.	SRB Protuberance Pressure Tap Locations	
	a. Systems Tunnel Ends	121
	b. Systems Tunnel and Attach Ring	122
	c. Separation Motors and Turbine Exhaust	123
	d. SRB Protuberance Pressures - Summary	124
10.	Model Installation in the AEDC 16T	
	a. First Entry (Straight Sting)	125
	b. Second Entry (Hi-Pitch Sting)	126
11.	Model Photographs	
	a. First Entry Installation	127
	b. Second Entry Installation	128
	c. Model 47-OTS - Front Quarter View	129
	d. Model 47-OTS - Rear Quarter View	130
	e. Model 47-OTS - Front View	131
	f. Model 47-OTS - Forward Support Detail	132 133
	g. Model 47-OTS - Rear View b. Model 47-OTS - Aft Artach Structure Detail	133
	h. Model 47-OTS - Aft Attach Structure Detail	1)4

Ü	
FTCHREC	
F	
DATA	
Ç	
ΕX	
INDEX	

	CHAIN IN WHITE			
FIGURE	TITLE	CONDITIONS	SCHEDULE	PAGES
, - 4	TYPICAL PRESSURE DISTRIBUTION - ORBITER FUSELAGE	PHI	A	1-4
2	TYPICAL PRESSURE DISTRIBUTION - ORBITER BASE	I	В	5-5
٣	TYPICAL PRESSURE DISTRIBUTION - BODY FLAP - LOWER SURFACE	Y/BBF	v	9-9
4	TYPICAL PRESSURE DISTRIBUTION - BODY FLAP - UPPER SURFACE	Y/BBF	U	7-7
\$	TYPICAL PRESSURE DISTRIBUTION - MISCELLANEOUS TAPS	TAP NO	ď	8-8
9	TYPICAL PRESSURE DISTRIBUTION - WING - LOWER SURFACE	Y/BW	Q	9-11
7	TYPICAL PRESSURE DISTRIBUTION - ET PROTUBERANCES	,	m	12-12
&	TYPICAL PRESSURE DISTRIBUTION - SRB PROTUBERANCES	ı	В	13-13
6	TYPICAL PRESSURE DISTRIBUTION - SRB SURFACE	PHI	អ	14-16
10	TYPICAL PRESSURE DISTRIBUTION - ET SURFACE	PHI	Ŀ	17-21
11	TYPICAL PRESSURE DISTRIBUTION - WING - UPPER SURFACE	Y/BW	D	22-23
12	TYPICAL PRESSURE DISTRIBUTION - VERTICAL TAIL	ZV/BV	9	24-25

COEFFICIENTS PLOTTED	$_{ m p}$ VS $_{ m x/1B}$	C _p VS TAP NO	Cp VS X/CBF	Cp VS XW/CW	C _p vs xs/l.s	Cp VS XT/LT	Cp vs xv/cv
SCHEDULE	⋖	В	၁	D	ല	Ĺt.	9

INTRODUCTION

Test IA105A was conducted in the Arnold Engineering Development Center 16 foot Transonic Propulsion Wind Tunnel. The test was conducted in two segments during the test periods from September 8 through September 27, 1977 (first entry) and from November 12 through November 20, 1977 (second entry). Total tunnel occupancy hours for the two test periods were 281 hours. The test article was a 3% replica (Model 47-OTS) of the Space Shuttle Launch Vehicle, Configuration 6, as shown in figure 2.

Pressure and force data were obtained at Mach numbers from 0.6 to 1.55 for angles of attack and sideslip within a ±8° matrix. A six-component balance was used to determine orbiter force and moment data in the presence of the external tank and solid rocket boosters. Forces and moments on the wing, vertical tail and elevons were measured using appropriate strain gage balances. The model was instrumented with 1586 pressure taps distributed over the orbiter, external tank and the left solid rocket booster to measure pressure distributions over the launch vehicle elements, localized loads on various protuberances on the external tank (ET) and solid rocket booster (SRB) (see figures 4 through 9 and Tables VI through X).

A secondary objective of this test was to determine the effect of the Shuttle Infrared Leeside Temperature Sensor (SILTS) on the pressure distributions on the vertical tail. The pod was mounted at the tip of the vertical tail and was not instrumented.

INTRODUCTION (Concluded)

This test was conducted in conjunction with the following other tests:

IA105B (DMS-DR-2413) and IA184 (DMS-DR-2456) conducted at the NASA/Ames Research Center 9 \times 7 foot supersonic wind tunnel to extend the Mach range up to 2.50 using the same 3% model (47-OTS).

IA156A (DMS-DR-2403) and IA156B (DMS-DR-2408) conducted using a 2% model (89-OTS) in the AEDC 16T and the NASA/Ames 9 x 7, respectively, to determine individual component loads and attach structure loads.

IA182 (DMS-DR-2439) and IA183 (DMS-DR-2444) conducted in the AEDC 16T using the 3% and 2% models, respectively, to investigate flow and angularity corrections to apply to the IA105A and IA156A data.

This report provides documentation of test IA105A consisting of remarks on the conduct of the test, descriptions of the model and test procedure, information on data reduction and plotted and tabulated test conditions and results.

NOMENCLATURE

SYMBOL	MNEMONIC	DEFINITION
	AADS	Ascent Air Data System.
$\mathtt{A}_{\mathbf{i}}$	•	Area over which Pi acts, ft2.
	AEDC	Arnold Engineering Development Center
AFA	AFA	flow angularity in the tunnel pitch plane, positive up, degrees
α, α _x	ALPHA(X)	component angle-of-attack, where $X \rightarrow 0$ = orbiter, T = external tank, S = SRB
	ALFC	model angle-of-attack corrected for sting imbalance deflections
ALFAOU	ALFAOU	orbiter angle-of-attack (uncorrected for flow angularity), degrees
ALFASU	ALFASU	SRB angle-of-attack (uncorrected for flow angularity), degrees
ALFETU	ALFETU	external tank angle-of-attack (uncorrected for flow angularity), degrees
ALPHAI	ALPHAI	tunnel instrumentation indicated pitch attitude, degrees
β, β _X	BETA(X)	component angle-of-sideslip where $X \rightarrow 0$ = orbiter, T = external tank, S = SRB .
BETETU	BETETU	external tank sideslip angle (uncorrected for flow angularity), degrees
BETAOU	BETAOU	orbiter sideslip angle (uncorrected for flow angularity), degrees

SYMBOL	MNEMONIC	DEFINITION
BETASU	BETASU	SRB sideslip (uncorrected for flow angularity), degrees
BFA	BFA	flow angularity in the tunnel cross flow plane, positive from right to left looking upstream, degrees
B _{vt}		vertical tail bending moment, in-lbs.
$B_{\mathbf{W}}$		wing bending moment, in-lbs.
$C_{\mathbf{A}}$	CA	axial force coefficient
c_{A_b}	CAB	orbiter base axial force coefficient
${^{\text{C}}_{ ext{A}_{ ext{B}_{ ext{V}}}}}_{ ext{t}}$	CABVT	vertical tail base axial force coefficient
$\mathtt{C}_{\mathtt{A_f}}$	CAF	orbiter forebody axial force coefficient
c_{A_u}	CAU	orbiter axial force coefficient, uncorrected
$C_{\mathbf{A_V}}$	CAV	vertical tail axial force coefficient
$C_{\mathbf{B}_{\mathbf{v}}}$	CBV	vertical tail bending moment coefficient
CBW	CBW	wing bending moment coefficient
$^{C_{\mathbf{h}_{\mathbf{e_i}}}}$	CHEI	inner elevon hinge moment coefficient, about hinge line X = 1387.0
$c_{h_{e_o}}$	CHEO	outer elevon hinge moment coefficient, about hinge line X = 1387.0
G L	CL	centerline
C _ℓ	CBL	orbiter rolling moment coefficient, body axis system
C _m	CLM	pitching moment coefficient

SYMBOL	MNEMONI C	DEFINITION
C _{mB}	CLMB	orbiter base pitching moment coefficient
$c_{m_{\mathbf{f}}}$	CLMF	orbiter forebody pitching moment coefficient
$c_{m_{\mathbf{u}}}$	CLMU	orbiter pitching moment coefficient, uncorrected
$c_{m_{\mathbf{v}}}$	CMV	vertical tail pitching moment coefficient
c_N	CN	normal force coefficient
$C_{\mathbf{n}}$	CYN	orbiter yawing moment coefficient
c_{N_B}	CNB	orbiter base normal force coefficient
c_{N_f}	CNF	orbiter forebody normal force coefficient
c_{N_u}	CNU	orbiter normal force coefficient, uncorrected
$c_{\mathbf{n_v}}$	CTV	vertical tail yawing moment coefficient, using vertical tail reference
c_{NW}	CNW	wing normal force (shear) coefficient
	CNSTNG	normal force coefficient of the sting (used for sting deflection calculations only)
c_{P_i}	CP(i)	surface tap pressure coefficient, port i
$c_{T_{\hbox{\scriptsize W}}}$	CTW	wing torsional coefficient
$c_{\mathtt{T}_{\mathbf{v}}}$	CTV	vertical tail torsional coefficient
$c_{S_{\mathbf{v}_{\gamma}}}$	SCF	vertical tail shear force coefficient
$C_{\mathbf{Y}}$	СУ	orbiter side force coefficient
$c_{\mathbf{Z_v}}$	CZV	vertical tail normal force coefficient
DEINR	DEINR	inboard elevon deflection (no load), degrees

SYMBOL	MNEMONIC	DEFINITION
DEONR	DEONR	outboard elevon deflection (no load), degrees
Δ		Incremental
ET	ET	External Tank
$^{\mathtt{H}_{\mathbf{e_i}}}$	HEI	inboard elevon hinge moment, in-1bs.
Heo	HEO	outboard elevon hinge moment, in-lbs.
HL	HL	Hingeline
$\delta {f e_i}$	IB-ELV	inboard elevon deflection angle, degrees
	I.D.	inside diameter
LH ₂	LH2	liquid hydrogen
LO ₂	L02	liquid oxygen
M	MACH	Mach number
MRC	MRC	moment reference center
δe _o	OB-ELV	outboard elevon deflection angle, degrees
N_{vt}	NVT	vertical tail normal (shear) force, lbs.
N_W	NW	wing normal (shear) force, lbs
OMS	OMS	orbital maneuvering system
OTS	OTS	integrated vehicle (orbiter, external tank, SRB)
ov	ov	orbiter vehicle
	O.D.	outside diameter
PHII	PHII	tunnel instrumentation indicated roll attitude, degrees

SYMBOL	MNEMONIC	DEFINITION
ф	PHI	angular cylindrical coordinate position around body, degrees
Pi		pressure at surface tap i, psf
P_{O}	P	freestream static pressure, psf
Pt	PT	freestream total pressure, psf
q	Q(PSF)	freestream dynamic pressure, psf
	RN/L	unit Reynolds number, million per ft.
SRB	SRB	Solid Rocket Booster
	SSME	Space Shuttle Main Engine
	SILTS	Shuttle Infrared Leeside Temperature Sensor
	SOFI	Spray on foam insulation
T _t , T _o	TTF	freestream total temperature, ^O F
T _{vt}	TVT	vertical tail torsion moment, in-lbs
$T_{\mathbf{w}}$	TW	wing torsion moment, in-lbs
x_T	XT	body station on the external tank
$x_{CP_{\mathbf{v}}}$	XCPV	vertical tail center-of-pressure, longitudinal location, in.
x_{CP_w}	XCPW	wing center-of-pressure, longitudinal location, in.
X _O /LB	X/LB	longitudinal location on orbiter body surface, fraction of body length
x/c _{BF}	X/CBF	chordwise location on body flap, fraction of local chord

SYMBOL	MNEMONIC	DEFINITION
X_{T}/L_{T}	XT/LT	longitudinal location on external tank body surface, fraction of body length
x_{V}/c_{V}	XV/CV	chordwise location on vertical tail, fraction of local chord
X_S/L_S	XS/LS	longitudinal location on solid rocket booster surface, fraction of body length
X _W /C _W	XW/CW	chordwise location on wing surface, fraction of local chord
Yo	YO	orbiter base lateral centerline
ⁿ ₩	Y/BW	spanwise location on wing, fraction of semi- span
η_{BF}	Y/BBF	spanwise location on body flap, fraction of body flap span
YCPV	YCPV	vertical tail center-of-pressure, lateral location, in.
Y _{CPW}	YCPW	wing center-of-pressure, lateral location, in.
z_o	20	orbiter water line
^{n}v	ZV/BV	spanwise location on vertical tail, fraction of vertical tail span
Z _{CPV}	ZCPV	vertical tail spanwise location of the center-of- pressure, in.
Z		distance from tunnel floor to sting centerline, in.
	B, b	base
	f	forebody
	1,L	left, local
	0	orbiter

NOMENCLATURE (Concluded)

SUBSCRIPTS

R,r right

S SRB

T External Tank

t total

u uncorrected

V,V_t Vertical Tail

wing

• freestream

REMARKS

Test IA105 was conducted in a manner which varied considerably from the original plan as described in the pretest report (Reference 1). The test was conducted in two separate tunnel entries with an orbiter balance and model support system change for the second entry. The pretest report was not updated to account for these changes.

Many anomalies occurred in the data during the test. In general, data not considered reliable were deleted from the final data. Three exceptions to this are as follows.

- a) The pressure and force data, prior to part number 147, was subject to the flexibility of the orbiter balance and the subsequent misorientation of the orbiter relative to the external tank.

 Orbiter balance data were deleted for these runs due to balance fouling but the pressure data are presented. The basic runs were repeated during the second entry.
- b) At various times throughout the test, relatively large zero shifts occurred in the data from the wing, elevon and vertical tail balances. These data are calculated using the initial zeros only.
- c) Two problems existed with the operation of the pneumatic multiplexers (Scanivalves $\widehat{\mathbb{R}}$). The most significant of these

REMARKS (Continued)

consisted of bad calibrate and/or second zero readings. Where the calibrate level varied considerably from the average of the other transducers the average was used. (The second zero was not used in any calculations.) This correction, in most cases may be considered adequate, however several possibilities exist that would make all or part of the data from the valve showing the bad calibration invalid:

- 1) If both the calibrate (Port 1) and the second zero reading (Port 24) are in error, a phasing problem is indicated.
 In extreme cases this will result in leakage between adjacent valve ports.
- 2) In less extreme cases phasing problems may result in large lag times.
- 3) If the initial zero reading is in error due to leakage to adjacent ports all pressures measured on that valve will be affected as it is used in the calculations. There is no way of determining if this reading was in error.

The second problem concerned non-syncronous stepping of the scanivalve drives. On occasion the valves would not all home together. When this was observed the data was repeated but there is no way of checking if it occurred at other times. This problem is, however, very rare.

REMARKS (Concluded)

Pressure data known to have been bad are delineated in Table V.

CONFIGURATIONS INVESTIGATED

The model was a 0.03-scale replica of the Rockwell International Space Shuttle Vehicle in launch configuration. The launch configuration consists of the assembly of a payload carrying orbiter, an expendable external oxygen/hydrogen tank (ET) (which provides fuel for the orbiter main engines), and two recoverable solid rocket boosters (SRB's). The general layout of the model is shown in Figure 2a.

The orbiter is of blended wing body design with a double delta planform $(81^{\circ}/45^{\circ})$ leading edge) 12% thick wing with full span elevons incorporating a six-inch interpanel gap between the independently deflectable inboard and outboard panels. A single swept (45° leading edge) vertical tail with rudder and/or speed brake capability is mounted between two orbital maneuvering system (OMS) pods. A single body flap is fitted on the lower trailing edge of the fuselage.

The orbiter fuselage is in accord with Rockwell International control drawing VL70-000140A, with the vertical tail as defined by drawing VL70-000146A. The OMS pods are of the later VL70-000140C configuration, these being a combination of the VL70-08401 and VL70-08410 drawings. Fitted to this is a new orbiter vehicle 102 wing as defined in the MD-V70 data book(s). For the purposes of this test and report, this combination shall be referred to as a "102 orbiter". The orbiter is shown in Figure 2b.

The ET is of cylindrical cross section with a nominal diameter of 333.0 inches full-scale and a maximum diameter of 336.2 inches full-scale. forward portion of the ET has a tangent ogive nose which terminates in a biconic nose cap over the LOX vent valve. The biconic nose has a pitot and four static pressure taps as a sensing part of the ascent air data system (AADS). Only two of the four static taps were simulated. The forward third of the tank is filled with LOX, and the aft two thirds is a vessel for liquid hydrogen. The aft end of the tank is basically an ellipsoid of revolution. Between the two vessels is a structure of stiffeners which is slightly larger than the nominal tank diameter. Covering the entire tank is a spray-on foam insulation (SOFI) of varying thickness as dictated by the relative heat load, i.e., approximately 2.5 inches thick on the tangent ogive, 1.0 inch thick on the cylindrical portion of the tank and 2.0 inch thick on the rear ellipsoid. The diameters given above include this SOFI. External to the ET surface are a number of protuberances which fall into three major categories: electrical trays, fluid lines, and attach hardware. Electrical trays which run parallel to the centerline of the tank are simulated, those which run up next to the aft orbiter/ET attach hardware are not. Fluid lines modeled are the LOX and LH_2 feed and vent plumbing. The attach hardware that is considered as part of the tank is the front and rear ET/orbiter attach structure, which is discarded with the ET at the end of the main engine burn.

The external tank is built to the geometry described above and more specifically to Rockwell International Interface Control Drawing ICD 2-00001, Rev. C, plus Interface Revision Notices B and C. The external tank is shown in Figure 2c.

The two solid rocket boosters (SRB's) are 146-inch nominal diameter cylinders, each with an 18-degree semi-angle nose with a 13.27-inch spherical tip. An 18-degree flared skirt, 208.20-inch diameter, protects the gimbaled rocket nozzle. A flexible, donut-shaped seal and thermal shield is provided between skirt and nozzle. Major protrusions from the basic envelope include a forward attach lug, separation thrusters front and rear, aft attach ring, various stiffeners and a full length electrical systems tunnel.

In common with the external tank, the SRB is built in accord with the Rockwell International Interface Control Document ICD 2-00001C, with the supplement of Interface Revision Notices B and C. An SRB is shown in Figure 2d.

The entire model was therefore basically in accord with the Configuration 6 Launch Vehicle, comprised of the 102 orbiter and T_{39} tank and S_{27} booster.

The orbiter provided for this test series is constructed utilizing existing orbiter fuselage, vertical tail, OMS pods, new wing, and body flap

components. An internal beam/bridge/balance block has been constructed to allow mounting the orbiter from the attach hardware of the ET and to measure six component airloads on the orbiter. Safety factors of three (3) on yield and five (5) on ultimate have been observed. The complete orbiter weighs approximately 140 pounds. The model has been principally fabricated of 17-4 stainless steel and aluminum alloy with some contouring with Renite. The orbiter is fabricated around a balance block of 17-4, bored and sleeved to accept the Task 2.5-inch MK XXII balance. This block is located in the rear half of the fuselage and the 7076 aluminum pieces which form the outer mold line of the fuselage are bolted to it. These pieces consist of a fuselage cover, two fuselage fairings and two wing fairings at the rear of the body, two side covers, and a forward nose and top cover. The two OMS pods are fabricated of 7076-T6 aluminum alloy. The OMS nozzles are simulated in aluminum as are the RCS thrusters. The fuselage and OMS pods are heavily pressure instrumented.

The wing is a two piece aluminum article screwed to a central steel wing beam. This beam of cross shaped planform supports one wing on a tang on each side of the central plate. The right hand tang is instrumented with strain gauges to form the three component wing load indicator balance. While the center of this beam forms the outer mold line of the bottom of the orbiter, the tangs are out of the airstream. The wings are made integral with the glove and a labyrinth seal is provided on the

metric side to improve the data quality. The wings are extensively hollowed to reduce the model weight. The left hand wing is instrumented with pressure taps. Each of the wings is fitted with deflectable inboard and outboard elevons which are supported in torsion only by a beam mounted on the hinge line, and in all other degrees of freedom by plain bearing hinges, also on the scale hinge line. Identical R.H. and L.H. elevon supports insure similar aeroelastic deflections. The opposite end of the elevon support beam is fitted with a ball bearing to minimize hysteresis effects. The right hand wing panels are supported on beams which are strain gauged. Available nominal deflections and actual unloaded measured deflections are listed in Table III. Simulated flipper doors are fitted to the upper wing surface.

An aluminum body flap with hinge moment capability and 40 pressure taps is provided. The hinge moment capability was not used, nor was the body flap deflection changed during this test entry.

Two vertical tails are provided for this test, the first being of 17-4PH Armco with a single plain hinged rudder/speed brake on each side. This is a pressure instrumented surface with 76 pressures (including one of the base group, #301). The hardline tubulations terminate at the front of the base of the tail, from whence the tubes are of flexible plastic to the Scanivalves. The tail itself is hard mounted to the balance block. The second vertical is of aluminum and mounts through this same

cavity, but is supported on a six component balance to measure vertical tail airloads directly. No rudder or speed brake deflections were used for this test.

Simulated SSME nozzles are provided in the base of the orbiter, since no sting interferes. The nozzles are set at the nominal angles of 16 degrees up, no yaw upper, and 10 degrees up, $\pm 3\ 1/2$ degrees yaw outboard for the lower two. The material used is aluminum alloy. The nozzles are mounted to a base plate which closes off the balance cavity at the back of the orbiter.

The entire orbiter is mounted on the 6 component balance, with the taper fitting into a block in the cavity at the rear of the fuselage. This block is screwed to a beam running under the balance block and also to a stiffener rod that runs forward above the right corner of the balance block to a "flying wedge" piece attached to the right front of the longitudinal beam. The ET attach hardware mounts to the bottom beam through holes in the bottom of the orbiter.

The external tank is principally fabricated of aluminum alloy to reduce weight and fabrication costs. The approximate weight of the external tank with instrumentation is 190 pounds. Safety factors of three (3) on yield and five (5) on ultimate have been observed in the design and construction of the tank.

The 333-inch full-scale diameter tank is built up out of five principal shell-like pieces that conform to the outer mold line of the tank including the spray on foam insulation. These pieces are a biconic forward tip which includes the entire tangent ogive (and is actually made up of two non-separable pieces because of a late lines change), a cylindrical mid-body, a short cylindrical aft body, and an aft cap. Slipped around the back of the aft body to fair into the cap is a ring designated a recontouring block, and an .030-inch shim is placed beneath the cap. These last two items are also the result of a late lines change. There are two holes aft and one hole forward on each side which are spotfaced inside and out to accept the SRB ring mounting studs and screws.

Slipped into the front of the nose of the tank is a biconic vent valve housing with an integral 10-degree half-angle conical yaw probe at the front. This yaw probe (The Ascent Air Data System or AADS) is instrumented to scale with two .010-inch OD hypodermic tubing taps at the scale location, .075-inch aft of the tip of the spike (taps 1901 and 1902).

The orbiter/ET attach hardware is scaled to as great a degree as possible and is load bearing. The orbiter/ET front attach was originally fabricated from a single piece of 17-4 stainless steel with two end plates, but prior to testing was modified to prevent orbiter rolling moment from being transmitted to the structure by use of a pin joint at the orbiter.

The lower end plate fits into a milled recess in the ET mid-body; the upper one fitting into an analogous recess in the orbiter, and fastened to the orbiter balance beam.

The aft load is carried through the vertical runs of the LO_2 and LH_2 feed lines, which are bushed, hollow bolts securing the ET to the orbiter balance block. The simulated aft ET/SRB attach hardware does not carry load.

Detailed external tank protuberances are provided. The pressure and feed lines are as previously used on model 47-T on the 331-inch tank, the ellipsoid fairings and cable trays are new construction.

Scanivalve and balance cables and pressures are routed into the tank from the orbiter through the hollow rear attach bolts. These and the cables from the tank Scanivalves are led out to the SRB's just behind the SRB front attach. The entire tank and its protrusions are pressure instrumented.

The two aluminum SRB's are reworked from a previous usage with the principal alterations being to the protuberances, the number of pressure taps (added to reflect the requests of the customer), and the mode of attaching the SRB to the ET. The SRB to ET attachments were modified to bear the expected loads and to carry the electrical leads through from the tank.

The SRB's are fabricated of 2024-T4 aluminum alloy to reduce weight.

The weight of the right hand SRB is approximately 40 pounds and the weight of the thinner, left hand SRB with the Scanivalves is approximately 21 pounds. Safety factors of three (3) for yield and five (5) for ultimate have been observed in this design.

Both SRB's are built around a 2.00-inch I.D. x 3.38-inch O.D. aluminum sleeve. This sleeve is pinned to the eccentric adapter and to the body of the SRB with pull pins on each side. The SRB itself consists of four main parts, a nose cone, a forebody, an aft attach ring and an aft body and nozzle assembly.

The SRB's are built up around the forebody with all instrumentation installed and are then slipped into the mounting holes in the tank. The aft body, spacer skirt, nozzle and thermal protecting shield of 2024 aluminum alloy are assembled as a unit on the forebody, sandwiching the aft attach ring between them. This ring is carved of a single piece of stock with integral mounting study that simulate the aft attach struty.

A 7/16 AHCS passes through the simulated SRB/ET front attach to secure the front of the SRB to the ET. The nose cone slips over the forebody of the SRB after the booster is secured to the external tank.

Nozzle actuator struts are simulated on each of the SRB aft skirts. The SRB aft separation thrusters and skirt stiffeners are also attached to

the skirt. The cable tunnel is simulated on both SRB's. The SRB stiffener rings are split to fit over the skirt and snap into a locating groove.

The left hand SRB is instrumented with pressure taps and a multiple Scanivalve unit. To provide access to the valves, a cover is fit to the LH forebody. All reference pressures, and instrumentation leads from the SRB are run internal to the LH fork of the sting.

The following nomenclature, illustrated in Figures 2b through 2d, was used to designate the model components:

Symbol Symbol	Description
B ₆₂	-140 A/B Body
C9	-140 A/B Canopy
E ₆₄	OV 102 Elevon
W ₁₃₁	OV 102 Wing
M ₁₆	Short OMS pods, -140 C w/nozzles
N ₂₈	OMS Nozzles
N ₁₁₂	SSME nozzles, OV102 complete
R ₅	146 A Rudder
v ₈	146 A Vertical Tail
FD ₃	Flipper Doors
F ₉	Body Flap

Symbol Symbol	Description
A configuration code has not been assigned for the SILTS pod.	
Т39	External Tank complete 330-inch O.D. with protuberances
s ₂₇	Solid Rocket Booster complete 146-inch O.D. with protuberances

TEST FACILITY DESCRIPTION

.

The AEDC PWT 16-Ft. Transonic Tunnel (Propulsion Wind Tunnel, Transonic 16T) is a continuous-flow closed-circuit tunnel capable of operation within a Mach number range of 0.20 to 1.60. The tunnel can be operated within a stagnation pressure range of 120 to 4000 psfa depending upon the Mach number. The stagnation temperature can be varied from an average minimum of about 80 to a maximum of 160° F as a function of cooling water temperature. Using a special cooling system of mineral spirits, liquid nitrogen, and liquid air, the stagnation temperature range can be varied from +30 to -30°F. Supersonic velocities are obtained by use of flexible-wall, Laval type nozzles.

The test section is 16-ft. square (in cross section) and 40-ft. long. The entire test section and supporting structure is constructed as a separate unit, called the test section cart, and is removable from the tunnel circuit. The test section carts may be moved to the model installation building where the test article and associated equipment are installed.

Two 40-ft. long test section carts are available for testing throughout the design temperature range. These carts are each 20-ft. long and are used in pairs to form the 40-ft. long test section. Each cart may be used in either the forward or aft position in the test section.

TEST FACILITY DESCRIPTION (Continued)

The test section is completely enclosed in a plenum chamber which can be evacuated, allowing part of the tunnel main flow to be removed through the test section perforated walls, thereby unchoking the test section at near sonic speeds and alleviating wall interference effects.

The 16T standard sting support system was used to support and position the 0.03-scale model in the test section during the first test entry. The model was supported by a dual sting arrangement consisting of two, 2.0-in. diam. stings exiting from the bases of the left and right hand solid rocket boosters (SRB). These stings were then attached by adapters to 4.16-in. diam. parallel stings which were mounted into the sting support system. This support arrangement allowed the base of the orbiter to be essentially free from any support system interference.

The sting support system utilizes computer control to position the model at angles of attack and sideslip by means of combinations of pitch and roll angles. This model support system is advantageous in that the model can be maintained at, or close to, the tunnel centerline where flow angularity is a minimum. It has the disadvantage, however, of relatively slow pitch and roll rates (0.17 deg/sec and 1.25 deg/sec, respectively) that proved to be too slow to meet the data acquisition requirements in the time available. A sketch showing the location of the 0.03-scale model in the test section is presented in Fig. 10a and a photograph showing this installation is presented in Fig. 11a.

TEST FACILITY DESCRIPTION (Concluded)

The Hi-Pitch model support system was utilized for the subsequent test reentry. This support system has the capability of pitch rates up to 8 deg/sec and roll rates exceeding 20 deg/sec. For these test entries, a pitch rate of approximately 1 deg/sec and a roll rate of 20 deg/sec was selected. Sketches and photographs showing the 0.03-scale model supported on the Hi-Pitch system are shown in Figs. 10b and 11b.

The Hi-Pitch support system was mounted into a dummy roll mechanism of the standard sting support system and utilized the vertical traverse feature of the latter system to maintain the model as close to tunnel centerline as possible within the physical constants of ±36 in. vertical traverse of the standard sting support system. The resulting position for the orbiter was approximately on centerline at angles of attack of 0° or greater and 2 feet below tunnel centerline at a sting pitch angle of -10 deg. Model angles of attack and sideslip were established by computer control utilizing the hydraulic motors of the Hi-Pitch system to position the sting at appropriate pitch and roll angles.

TEST PROCEDURE AND INSTRUMENTATION

The model was instrumented so that pressure and force data could be obtained simultaneously, except on the vertical tail where both pressure instrumented and force (strain gauge) instrumented vertical tails were used.

The model was heavily instrumented to measure surface pressures. A total of 1586 pressures were measured by thirty-eight 48-port pneumatic commutators (Scanivalves $^{\bigcirc{\mathbb{R}}}$) located in the model components as shown in Fig. 3. The location of the 1586 pressures are shown in Figs. 4 through 9 and are categorized as follows:

Major Model Component	Model Component		No. of Orific	es
Orbiter	Fuselage		206	
	Flap		40	
	Base		24	
	Vertical Stabilizer	r	75	
1	Wing		283	
•	-	Total	628	
External Tank	Body		424	
· 1	Base		74	
	Protuberances		232	
1	AADS		2	
•		Total	732	
Solid Rocket Boosters	Body		175	
1	Base		10	
Ţ	Protuberances		41	
•		Total	226	

Not all pressures were measured during every run. The Scanivalves were tubed to allow for abbreviated scans in the interest of reducing test

TEST PROCEDURE AND INSTRUMENTATION (Continued)

time. The second entry tubing scheme differed from the first entry to allow for even shorter scan where only base pressures were measured. In general forebody pressures were not measured after the first complete Mach number sweep as those pressures were not affected by elevon deflection changes.

In addition to the model pressures, forces and moments were measured by strain gauge balances as follows:

Balance Location	Type	Model Forces & Moments Measured or Calculated
Orbiter	6-component	Orbiter normal force, side force, axial force, pitching-moment, rolling moment, yawing moment
Wing	3-component	Wing normal force, bending moment and torsional moment
Vertical Stabilizer	6-component	Vertical stabilizer normal force, side force, axial force, pitching moment, bending moment, and torsional moment
Inboard Elevon	1-component	Inboard elevon hinge moment
Outboard Elevon	1-component	Outboard elevon hinge moment
Dual Stings	4-component (each)	Launch vehicle normal force, side force, and pitching moment (used to calculate sting deflections)

The orbiter was mounted on the Task MK XXII 1.5-inch diameter balance during the first entry. This balance proved to be too flexible resulting in excessive deflections of the orbiter relative to the ET and SRB's

TEST PROCEDURE AND INSTRUMENTATION (Continued)

and fouling between the metric and non-metric parts. On September 14 this balance was purposely "caged" to reduce the deflections. Quantitative determination of the effectiveness of the caging was performed and deflections were satisfactory. None of the data obtained from this balance is considered reliable. The model was modified for the second entry and mounted on the Task MK XXII 2.5-inch diameter balance. This larger, stiffer balance reduced the deflections approximately 50% and eliminated the fouling problems.

An AEDC supplied angular position indicator (dangleometer) was mounted in the external tank, and was used only as a check at 0° roll angles during the test. Due to the erratic nature of the data, particularly at roll angles other than 0° , it was eliminated from the data printout.

The pressure transducers were calibrated prior to the test and were again calibrated after the model was installed in the tunnel using the "reference" and "calibrate" ports on the Scanivalves in accordance with normal AEDC/PWT procedures.

After installation all pressures were either leak checked using a handheld vacuum pump or continuity checked with compressed air when the orifice was located in a position where it could not be leak checked. This checking continued throughout the test whenever there was any evidence of a problem and after model changes to check all pressures which had been disconnected during the change.

TEST PROCEDURE AND INSTRUMENTATION (Concluded)

The 2 1/2-inch MK XXII balance, the wing balance, the vertical tail balance and the elevon beams were calibrated in the AEDC calibration laboratory prior to the test. The elevon hinge moment gauges were calibrated in the tunnel after the model was installed, and were check calibrated after each change in elevon angle. All balances were check-loaded after the model was installed in the tunnel.

After installation in the model, the dangleometer was calibrated over the angle-of-attack range required for the test.

The general test procedure was as follows: After starting the tunnel, the desired test conditions for a particular Mach number (the lowest required for the subject configuration) were established as given in Table I. Data were obtained during a pause at each required angle-of-attack and sideslip. After data were obtained for the required angle matrix, the test conditions were changed to the next higher Mach number and the process was repeated. After all data on a particular configuration had been obtained, the tunnel was shut down for a model change to the next scheduled elevon setting. Periodically, the AADS probe was rotated in 90-degree increments so that data were obtained on the AADS pressure taps in four different positions. The change from the "pressure" to the "force" vertical tail was made during the non-running shift to provide sufficient time to check out the balance. The SILTS pod was also removed during a non-running shift to minimize model change time during the running shift.

DATA REDUCTION

Standard AEDC methods for computing tunnel parameters, balance forces and moments, and model attitudes were used. Pressure coefficients were calculated for all model pressures. Force and moment coefficients (body axis system only) were computed for each balance using the axis system defined in Figure 1a. Orbiter force and moment data were adjusted to account for the difference between measured base pressure and freestream pressure. Elevon hinge moments, and wing and vertical tail forces and moments were calculated in coefficient form about reference locations specified for each component.

The moment reference locations, in full-scale dimensions, are as follows:

Total vehicle

(Used for orbiter data): X_T 976, Y_T0, Z_T 400

Right wing: X_0 1307, Y_0 105

Right elevons: Hingeline at X_o 1387

Vertical tail: X_o 1414.3, Z_o 503

The attitude of the external tank/SRB's was calculated from the sector reading and the output of the strain gauges on the forked sting. Balance deflections were accounted for in determining the attitude of the orbiter. The deflection of the elevons and the vertical tail due to applied loads were also calculated. The deflection of the wing under load was found to be insignificant and therefore was not accounted for in data reduction.

Pressure coefficients were computed as follows:

$$C_{p_i} = (P_i - P_o)/q$$

where "i" represents the model orifice number.

Standard six component body axis force coefficients were computed for the balance mounted orbiter. The reference area used was the orbiter wing area, and the reference length for moment coefficients was the orbiter reference length. Moments were computed at the integrated vehicle reference center which is at the orbiter nose on the tank centerline. This is located at $X_T = 976$, $Y_T = 0$, $Z_T = 400$ in tank coordinates, and $X_O = 235$, $Y_O = 0$, $Z_O = 63.5$ in orbiter coordinates. The balance transfer dimensions are depicted in Figures 1b through 1d.

The normal force, axial force, and pitching moment coefficients for the orbiter were adjusted for base pressure as follows:

$$C_{N_B} = \frac{-1}{S_w} \tan 14.75^{\circ} \sum_{301}^{324} C_{p_i A_i} + \frac{-1}{S_w} \sum_{401}^{440} C_{p_i A_i}$$

$$c_{A_{B}} = \frac{-1}{S_{W}} \sum_{301}^{324} c_{p_{i} A_{i}}$$

$$C_{m_{B}} = \frac{-1}{S_{w} l_{b}} \left[-X_{1} \tan 14.75^{\circ} \sum_{301}^{324} C_{p_{1}} A_{1} - X_{2} \sum_{401}^{440} C_{p_{1}} A_{1} + Z_{1} \sum_{301}^{324} C_{p_{1}} A_{1} \right]$$

where X_1 , X_2 and Z_1 are the distances to the centroid of the area from the moment reference center.

The resulting coefficients are applied as follows to obtain the forebody coefficients:

$$C_{Af} = C_{Au} - C_{AB}$$

$$C_{Nf} = C_{Nu} - C_{NB}$$

$$C_{mf} = C_{mu} - C_{mB}$$

The model component loads were reduced to force and moment coefficients in the following manner:

For wing bending and torsion:

$$C_{N_{w}} = N_{w} / [(q)(S_{w})]$$

$$C_{B_{w}} = B_{w} / [(q)(S_{w})(b_{w})]$$

$$C_{T_{w}} = T_{w} / [(q)(S_{w})(\overline{c})]$$

For vertical tail bending and torsion:

$$C_{S_{V}} = N_{Vt} / [(q)(S_{Vt})]$$

$$C_{B_{V}} = B_{Vt} / [(q)(S_{Vt})(C_{Vt})]$$

$$C_{n_{V}} = T_{Vt} / [(q)(S_{Vt})(C_{Vt})]$$

(Data from the vertical tail pitching moment gauge were not reduced.)

For elevon hinge moments:

$$C_{h_{e_i}} = H_{e_i} / [(q)(S_e)(C_e)]$$
 $C_{h_{e_o}} = H_{e_o} / [(q)(S_e)(C_e)]$

The flow angularity corrections for alpha and beta were revised after completion of this test. Force data presented in this report are the second entry data received by DMS on April 17, 1980 with the final flow angularity corrected alpha and beta. Elevon deflection angles were also corrected for loads. (See References 7 and 8.) The data are tabulated in the Appendix and carry the two letter test code of 8M.

This designates the DMS special request under which the corrections were performed and documented. These data may also be found in plotted form in the IA183 test documentation (Reference 9). The angles of attack and sideslip of the pressure data presented in Volumes 2 and 3 of this report have not been corrected for flow angularity and may differ from the force data presented herein.

A schedule of completed runs is given in Table II which is the Data Set/ Run Number Collation Summary for the test.

DATA REDUCTION (Continued)

Reference dimensions and constants used were:

SYMBOL	VALI MODEL SCALE	JE FULL SCALE	DESCRIPTION	
A 301	- 0 -		Orbiter base area for pressure tap	301
A ₃₀₂	0.022146 ft. ²			302
A ₃₀₃	0.122387			303
A 304	0.005970			304
A ₃₀₅	0.004909			305
A 306	0.009287			306
A307	0.007960			307
A ₃₀₈	0.010613			308
A309	0.022554			309
A ₃₁₀	0.003980			310
A ₃₁₁	0.023217		*.	311
A ₃₁₂	0.016584			312
A ₃₁₃	0.001327			313
A ₃₁₄	0.011940			314
A ₃₁₅	0.013798			315
A ₃₁₆	0.007297			316
A ₃₁₇	0.012603	•		317
A ₃₁₈	0,017247			318
A319	0.021758		↓	319

	VALUE			
SYMBOL	MODEL SCALE	FULL SCALE	DESCRIPTION	
·A320	0.015920		Orbiter base area for pressure tap	320
A ₃₂₁	0.017247			321
A ₃₂₂	0.014328			322
A ₃₂₃	0.006103			323
A ₃₂₄	0.026003		. **	324
A ₄₀₁	- 0 -		Body flap base area for pressure tap	401
A ₄₀₂	- 0 -			402
A.403	- 0 -			403
A404	- 0 -			404
A405	0.01151 ft. ²			405
A406	0.010267 ft. ²			406
A407	0.0089838 ft. ²			407
A408	0.0077004 ft. ²			408
A409	0 -			409
A410	- 0 -			410
A ₄₁₁	- 0 -			411
A ₄₁₂	0 -			412
A413	0.012834 ft. ²			413
Allh	0.012834 ft. ²			414
A415	0.012834 ft. ²			415

	VALUE			
SYMBOL	MODEL SCALE	FULL SCALE	DESCRIPTION	i
A416	0.012834 ft. ²		Body flap base area	
	-		for pressure tap	416
A417	- 0 -			417
A418	- 0 -			418
A419	- 0 -			419
A420	- 0 -			420
A ₄₂₁	- 0 -			421
A422.	- 0 -			422
A423	- 0 -			423
A424	- 0 -			424
A425	- 0 -			425
A426	- 0 -			42 6
A427	- 0 -			427
A428	- 0 -			428
1429	- 0 -	·		429
A430	- 0 -			430
A431	- 0 -			431
A ₄₃₂	- 0 -			432
A433	- 0 -			433
A434	- 0 -			434
A435	- 0 -			435
A436	- 0 -		.	436

	VALU	E	:
SIMBO	L MODEL SCALE	FULL SCALE	DESCRIPTION
A437	.011551 n. ²		Body flap base area for pressure tap 437
A438	.010267 ft. ²		438
A439	.0089838 ft. ²		439
AjjijO	.0077004 ft. ²		440
ъ	38.709 in.	1290.3 in.	Orbiter reference length
pA	28.101 in.	936.7 in.	Wing bending reference length
c	14.244 in.	474.8 in.	Mean aerodynamic chord
Ce	2.721 in.	90.7 in.	Elevon reference chord length
Cyt	5.994 in.	199.8 in.	Vertical tail reference chord length
S	2.421 ft. ²	2690. n. ²	Wing reference area
Svt	0.3719 ft. ²	413.25 st. ²	Vertical tail reference area
X1	37.890 in.		Base pressure transfer distance
x ⁵	39.890 in.		Base pressure transfer distance
X _T	- 25.570 in.	-852.33 in.	Longitudinal transfer distance from orbiter balance reference point to integrated vehicle MRC
XTV	2.341 in.	78.03 in.	Longitudinal transfer distance from vertical tail balance reference center to vertical tail MRC
z ₁	9.795 in.	-326.5 in.	Base pressure transfer distance

DATA REDUCTION (Concluded)

	VAL	Γ Ε	
SYMBOL	MODEL SCALE	FULL SCALE	DESCRIPTION
Z _T	-9.795 in.	-326.5 in.	Vertical transfer distance from orbiter balance center- line to integrated vehicle MRC
Z _{TV}	0.632 in.	21.07 in.	Vertical transfer distance from vertical tail balance centerline to vertical tail MRC
Se	0.189 ft. ²	210.0 ft. ²	Elevon reference area.

UNCERTAINTY OF MEASUREMENTS

The uncertainty levels quoted below are from the facility (Reference 5). These numbers represent a band containing 95% of the data and are derived from multiple calibrations of the instruments and from the repeatability and uniformity of the test section flow during tunnel calibration.

Balance	M _{cc}	α/β	ACNF	∆·CY	ACAF	∆ CLMF	ACBL	ACYN
Orbite	0.6 0.9 1.2 1.4	0/-8 0 4/-4 0/-4 5 4/-4	0.0078 0.0075 0.0056 0.0056 0.0047 0.0047 0.0045	0.0028 0.0028 0.0023 0.0023	3 0.0018 0.0018 3 0.0013 3 0.0011 5 0.0011 6 0.0011 0.0011	0.0037 0.0032 0.0031 0.0030	0.0005 0.0002 0.0002 0.0002	0.0019 0.0019 0.0016 0.0016 0.0016
	Balance	M _®	<u>α/β</u> <u>C</u> :	nw —	CBW	CTW		
	Wing :	0.60 0.90 1.25 1.40	0/-8 0 4/-4 0 0/-4 0 4/-4 0 0/-4 0	.0028 .0021 .0021 .0018 .0018	0.0004 0.0003 0.0003 0.0002 0.0002 0.0002	0.0017 0.0017 0.0013 0.0013 0.0011 0.0011		
Balance	<u>Η</u> α/	R CZV	csv	CAV	CHV	CBV	CTV	
Vertical Tail	0.60 4/ 0.90 4/ 1.25 4/ 1.40 4/	-8 0.00 -4 0.00 -4 0.00 -4 0.00 -4 0.00 -4 0.00		0.0109 0.008 0.008 0.0068 0.0068	1 0.0037 1 0.0037 3 0.0031 3 0.0031 5 0.0030	0.0039 0.0025 0.0025 0.0021	0.0035 0.0035 0.0029 0.0029 0.0028	

UNCERTAINTY OF MEASUREMENTS (Continued)

Balance	M_{∞}	α/β	CHEI	CHEO
Inboard	0.60	4/-8	0.0040	0.0031
& Out-	+	0/-8	0.0040	0.0031
board	0.90	4/-4	0.0029	0.0023
Elevons	\	0/-4	0.0029	0.0023
1	1.25	4/-4	0.0025	0.0019
	¥	0/-4	0.0025	0.0019
	1.40	4/-4	0.0024	0.0019
ļ	+	0/-4	0.0024	0.0019

The uncertainties in model angle of attack and sideslip resulting from uncertainties in sting pitch, sting roll, and sting/balance deflections were estimated to be ± 0.10 deg. The uncertainty in the determination of flow angularity correction was estimated to be ± 0.10 deg. In combined form, the final uncertainties in model angle of attack and sideslip are estimated to be ± 0.14 deg.

Pressure coefficient uncertainties are estimated to be as follows for test conditions where the Scanivalve® calculations indicated no malfunctions.

	СР	CP	CP	СР
M∞	-1.0	-0.5	0.5	1.0
0.60 0.90 1.25 1.40	±0.0220 ±0.0144	±0.0199 ±0.0137 ±0.0110 ±0.0105	±0.0178 ±0.0130 ±0.0109 ±0.0105	±0.0182 ±0.0132 ±0.0110 ±0.0106

REFERENCES

- 1. SD77-SH-0194, "Pretest Information for Test IA105A of the 0.03-Scale Pressure Loads Model 47-OTS of the Space Shuttle Integrated Vehicle in the 16-Ft Transonic Test Section of the Propulsion Wind Tunnel at AEDC," dated September 2, 1977.
- 2. STS-79-0016, "Pretest Information for Test IA184 of the 0.03-Scale Pressure Loads Model 47-OTS of the Space Shuttle Integrated Vehicle in the 9 x 7-Foot Supersonic Test Section of the Unitary Plan Wind Tunnel at Ames Research Center," dated March 5, 1979.
- 3. SD77-SH-0227, "Pretest Information for Test IA105B of the 0.03-Scale Pressure Loads Model 47-OTS of the Space Shuttle Integrated Vehicle in the 9-Foot by 7-Foot Supersonic Test Section of the Unitary Plan Wind Tunnel at NASA/Ames Research Center," dated October 12, 1977.
- 4. "Research Facilities Summary, Volume II Wind Tunnels: Subsonic, Transonic, Supersonic," NASA/Ames Research Center, dated December 1965.
- 5. AEDC-DR-78-25, "Documentation of Wind Tunnel Tests of the NASA Space Shuttle Launch Vehicle Models", dated 16 March 1978.
- 6. AEDC-TMR-80-G21, "Six Tests of the NASA Space Shuttle Launch Vehicle in the AEDC 16-Ft. Transonic Wind Tunnel and the Corrections Applied to the Test Data", dated July 1980.
- 7. ARO, Inc. Letter of April 9, 1980 to D. E. Poucher from J. A. Black, subject, "Recomputed Space Shuttle Data from NASA/Rockwell Tests IA-105A, IA-156A, IA-105AR, IA-182, IA-183 (Project P43T-09)."
- 8. Rockwell International IL No. SAS/AERO/78-014, "Correction Requirements for IA105/156 Force and Moment Data," (April 25, 1978).
- 9. NASA-CR 160,488, DMS-DR 2444, "Results of Tests Using a 0.02-Scale Model (89-OTS) of the Space Shuttle Integrated Vehicle in the AEDC 16-foot Transonic Propulsion Wind Tunnel (IA183).
- 10. Rockwell International IL No. SAS/AERO/78-024," IA105A Second Entry Pressure Data Corrections," (March 24, 1978).

TABLE I

ST : IA 105	A		DATE:
	TEST CO	NDITIONS	
MACH NUMBER	REYNOLDS NUMBER (per unit length)	DYNAMIC PRESSURE (pounds/sq. ++1)	STAGNATION TEMPERA (degrees Fahrenheit)
0.6	40×106	442	
0.8		550	
0.9		698	
0.95		723	
1.05		763	,
1.10		785	
1.15	Y .	804	
1.25	3.5 x 106	728	
1.40	3.5 × 10 6	752	
1.55	3.2 × 106	703	
		·	
		<u> </u>	
	+ 11 7	7	
BALANCE UTILIZED:	see table I	V	
	CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
NF			
SF			
AF			
PM			
RM			
YM	·		
			
1 177			
COMMENTS:			

AEDC 16T- 470

١	TEST: IAIOSA	105A (1st Entry)	* (}		DATA		1/8/1	2 2	RED C	SET/RIN NIMBED COLL ATION CHAMADY	ON CITY	V0 4 1/1		DATE	30 S	SEPT 1977	7.1	
1									י וייי	0 C C A I	ADC NO	L A W			1			
	DATA SET	CONFIGURATION										A	ANGL	E OF	ATTA	OK ~ R	1	DEG
=1	JEN 11FIER			8	Ser	ا کوں	Rn/L	Mach	B					0				
<u>r </u>	R4B*01	PTS WO SILTS	7	4	0			09.0	0					Įσ				
	02	PRESSURE TAIL	ال	-	-	-		070	 -					1 5		-		7
	03			8				080		-	-	-		22				
	8			_				88		-				2,4				
	05							8.0	-	-	_			24				
	8						F	0.92				-	ļ.	8				
!	07							760						; F				rE5
	8			-			L	290	-					3 7				r Ru
	8		İ	-	 	<u> </u>		280	1			1		2 2				114 M
	0		İ	<u> </u> 			F	160	-	1	1	-		3 3				U N ' B
	=				+			8	+	-	1	1		3/3				ERS
	2			<u> </u>	+	$oldsymbol{\mathbb{F}}$	+	2 8	1	+	-			20				
1	I K		1	+	‡	$oldsymbol{\mathbb{F}}$	+		+	1	1			35				
_	2 3		Ť	+	#		+	ō	$\frac{1}{1}$	1	-			36				
1	₹ !:		\dagger	+	$\frac{1}{4}$	\pm	+	8	\dashv					37				
	5		+	\downarrow	#		1	50						38				
	9		+	$\frac{1}{1}$	+	1	1	9						39				
	-							1.05						40				
	18			_	-	1		1.06	1					41				
	,	13	61		25		31		37	43	49	6	5.5		61	67		75 76
1		عسديداييهمت	4	1	4	4	<u>+</u>]	4	1111	1	111	4	-	1 1 1 1	1 1 1	-	-
	Q 08	"	-4,2,	0	2.4		ខ	COEFFICIENTS	27.5						10VAR (1)	I DVAR	[2]	> 0 z
_	SCHEDULES		-4,0	0.4														
₩ *	* FORCE DATA FOR	FOR 2nd PAIRY ONLY PRESENTED LEGELS	7	7	מ לו	6	7031]

FORCE DATA FOR 2nd ENTRY ONLY PRESENTED HEREIN

TABLE II (Continued)

			DEC							TE	ST	RU	N N	JMB	ER	s						_		T	75.76	> 0 z	
	_																			T	T		T		+	7	1
	17761		8		1		7		1	7			+	\dagger	1			+	+	+	+	+	+	-		IDVAR (2)	
			}∤	+	-	_	_	\downarrow	\dashv	_			_	1	\downarrow			igspace							. 63] ≦	
	SEPT	Į į								1																ξ	
	30		Y - ACK					1	1				T	Ť	\dagger		<u></u>		\dagger	+	\dagger	+	+	-		IDVAR (1)	
	 W	7	Ļ	+	+	+		-	+	+			$\frac{1}{100}$	-	4			_	╀-	igspace	_	 	\downarrow	_ ;	. اه	<u> </u>	
•	DATE	U	1) :	47	43	44	\$ 3	46	47	8	49	50]	
		 - 	1																		1	1		1 :		‡	
		1	2	+	+	+	+		+	+	-		_	<u> </u> 	+	\dashv			-		-	-	+	-]	
	SET/RUN NUMBER COLLATION SUMMARY					_	-	\perp	1	\perp																1	
	\S S S																			ĺ				3	-]	
(pa	N _O			\dagger	\top	1	\dagger	-	\dagger	+	+			<u> </u>	\dagger	\dashv	1			-	-	-	+-			1	•
(Continued)	LA1	F	1	\bot	1	1	\perp		_	1				_	_	1								43	_	}	
Cont	ខ										İ					1									-	1	1
	BER		e	0	1 -	1	1	1	1	丰	1		-		\dagger	†	1						1	5] <u>-</u>	2 2	
TABLE 11	N C W		Mark	8	2	1	2 8	125	1 5	3 5	9	55	3		+	+	\dashv						-	1	-	OEFFICIENTS	
4	NS		R./1 1	40		\pm	- 4			-) (?)	3.2 1.55	4.0 0.95		╁-	+	\dashv	\dashv				<u> </u>	_		-	COEFI	
	ET/F		Sen R	X 4	T	╁	4		=	-	7	10	4		-	1	4	\dashv						31		Ŭ	
			_		+-	#	1	1	1	1	#		<u> </u>		_	\downarrow	1	_	_								
	DATA		Ser	2	1	‡		#	丰	‡	#	1	-		<u> </u>	1	1							25	4	°4°	
			B	L_	 	-		-	╀-	+	+	\perp			_	+	\downarrow	1	\dashv	_	_				4	°o	
ŀ	7	H	7	80	\vdash	F			F	F	+	<u>- </u>	4			$\frac{1}{1}$	+	\dashv	\dashv	4	\dashv	_			1	-4°,	
	7	2		51:	1								1											61	4	7	
Q	(1st Entry	CONFIGURATION		SILTS	PRESSURE TAIL															-		-	ı		1	8	
4	100+	FIGUR		9/2	55 E	╟	_		\vdash	-	╀	╬	-												1	B	
[5]	\triangleleft	00		ØTS	S.															1			ı		1		
Ŋ	105			0		<u> </u>																			1	84	ES.
AEDC 16T-470	TEST: IAIOSA	SET	FIER	419	20	7	2	23	77	25	7	9	17		-		Ī		1		1	1	\exists		1	o o	SCHEDULES
		DATA SET	IDENTIFIER	R4B*19	_						-	+	-												1	5	SCH
L			-	<u>m</u>			<u> </u>						1					\perp		\perp		\perp			}		

AEDC 16T - 470

	776		DEG.	8	5 64		,							MBE									75.76		
	SEPT	0	~Q~	+	62 63	68 69	73 74	76 75	5 86	7 89	-	120 125	8	-	┼	 	154 155		┼	57 6	ļ	180	1		ĺ
	30 S		אַ אַרַר	2	9	9	7	7	85	87	115	12	- 33	13	<u>\$</u>	144	15	53	3	169	174	1			
	DATE:	V	- 1.4	0	<u></u>	67	72	77		92	114	611	128	133	138	143,46	153	158	डि	168	173	178	61		
	X	ANCIE		7-2		و	_	8		-	3	8	7	2	7	2	2	7	-	7	~1	,	55	4	
	SUMMAR	A		+	3	65 66	70 7	79 78	80 8		112 113	118	126 127	131 132	136 137	141 142	151 152	156 157	161 162	166 167	271 IT	76 177	49	4444	
Tingen)	COLLATION SUMMARY		r	'Н-	000				7		-	-				-	1,		-	7			43		
1			76))			1																	4 4 4 4	S
' 	SET/RUN NUMBER		Mach	18		OR:	80	260	8	0	8	<u>.</u>	1.15	1.25	∂. G.	183	990	080	060	93.0	8	1.25	37	ميليميميك	EFFICIENT
			Sec Roll	5 40	1	+	+	1	1	+	+	-	-	3.5	3.5	3.2	4.0		1		-	135	91	1	_
j	DATA		200		-			+	#	+	+	+	+	+	+	+		+	+	1	•		25	1	•
			४	U	C	7 -	+		+			+	#	+	+	#	+	+	+	+	+			1	0
2	(1st Entry)	RATION		W/o SILTS													+ SILTS	CE TAIL					61	4	\ \ \
AEDC 16T - 470		CONFIGURATION		φτs w/	PRESSURE	-						1	1		ľ		075 +	PRESSURE TAIL	1		 		=	4	(
AEUC	TEST : TA 105 A	DATA SET	1 E K	48*28 ¢	29	ľ	3 4	2 2	3 8	3 7	5 #	9 8	8 1	7)	8	- 1		<u> </u>	44	5 3	44	3	-	4 7 7	,
	TEST	DAT	NOC	R48			<u> </u>	1			1	+	1	+	1	1	1	1		+	-	1			

TABLE II (Continued)

AEDC 16T - 470

<u> </u>	EST:IA	TEST: IA105 A (1st Entry)		DATA		/RUN	N C N	FR CO	SET/RUN NUMBER COLL ATION SIMMARY	77177	> 0 Y	므	DATE:	30.8	SEPT	77.61	_
1								3) 		1			
, -	DATA SET	CONFIGURATION	1	ļ							ANGLE	l	OF SIE	SIDESUP	2~B	~ DEG	0
= 1	מאויו ה	1	४	ون	860	Rm/LM	Mach 9	Ø.	-8	-(و	4-	-2	0	2	14	િ	α
区	K4B*46	4TS + 81	۵	의	6	3.2 1.	1.55 0			181	छ		8	 	28	185	
	47	PKESSUKE TAIL	#	#		3.5 /	04.			186	187		203	2	200	8	
1	48			#	1	4.0	0.10			193	194		195		8	197	
1	43	-	-	+	-		1.15			202	201		8	-	8	82	
	8	OTS W	U		6	0	0.60		309		210		216	14	212	†	213
	21	PRESSURE TAIL	ш	1		0	080			214	215		216	2	╂	218	2
	52		۵	4		0	060			240	241		242	2	+-	244	
	53					0	980			235	23%		237	10		8	1
	B						.85			219	88	-	221	10	+	222	
	8					<u>-</u>	0.10			224	225		3%	10		8	
<u> </u>	52					-	1.15			80			1 6	1	┿	0 2	T
	57				E	35	1.25			220			3 6			3 1	T
	88		E	-	0		¥			1 6		1	3	1	+	254	
	} [\pm	#	十	_	0), (0),	1		249			250			251	
	h .			+	1		0.1			252	-		253		\\	254	
	3		1	\downarrow		<u>-</u> -	1.15			255	25%		257	8	258	259	
	9		1	#	1	3.5 1.	23			260	261		262	2	26.3	264	
	3			-		3.5 1,	1.40			268			269		''	270	
2	रु -					3.2 //	1.55			172			272	-		273	
	1	7 13 19		25	"	31	37		43	49		55	19	-	1	,	
1	4414		}	4	1	#	1	4 4 4	1 1 1	1		- -			` -		9/5/
	. E.	C) K = -			,	B. COEFFICIENTS	E L	11]	8,-4,	,0,4°	ر و ا			IDVAR (1)	ξ.	IDVAR (2)	21 NOV
_	SCHEDULES	LES 1) = -8 ,	P	0	4°			1									1

AEDC 16T-470 TEST:IA105A (1stEnty)

				· .	- -			7	EST	RUN	, NU	MBE	R5								5 76	,	٠ ت ٢	
7.1	DEG.	00	8								320												2	
7761 -	8 ~ DE	9		2885	8	2	200	100	010	313	+	325	329	358	363	888	340	332	333		67		IDVAR	
30 SEPT	2	4	8	284	289		Ş	 			319		+ -	•	38	7.9%				-		-	E	
300	us aci	2																	-	-	61	-	IDVAR	
DATE:	OF SI	0	278	283	288	惡	88	305	8	312	318	323	328	35%	188	38	338	33.1	\$3\$		9	1111		
ي ــــــــــــــــــــــــــــــــــــ		-2																			55	11		
ARY	ANGLE	-4	277	282	287		299	S			715	322	327	355	3	365	537					1		
SUMM		૭		281	28%	292	298	323	88	3		321	526	354	359	364	33%	83	353		49	4		
SET/RUN NUMBER COLLATION SUMMARY		-8	276								316										43	4		
100 x																						1	1	
JMBEF		<i>ا</i> م	0	7		2	10	10											-		37	4	ENTS	
N NO		Seo Rn/L Mach	4.0 0.60	080	90	29.5	095	105	<u>-</u>	1.15	0,60	80	0.90	26:0	8	9	1.15	5 1.25	5 1.40			1	COEFEICIENTS	
SET/F		Seo R.	11 4							-	7							3.5	3.5	-	31	7		4
DATA	A B	200	0							1	 	-					1	+	-			}		°
		8										۵					\perp				25	1	-40	4
7		ိ	<u>0</u>								의								7	1	6	1	8	io io
<u> </u>	ATION		SILTS	¥ F	÷		"O SILTS	A I		Ì]	8	8
10 T)	CONFIGURATION		Q _M	PRESSURE TAIL		-	ł	METRIC 1	\vdash	\dashv	\dashv				-	\dashv	1	\dashv	-	I	. 6	4	q	9
(Alivaier) A COINT.	õ		6	PRE	*		фтѕ	ME														1	84	ES
	DATA SET	DENTIFIER	R4B*64	65	3	19	8	8	2	=	Z	22	4	12	12/2	F	2	8	8	1	7	1	8 OR	SCHEDULES
	DAT	N N	R4B			1		+			1	$\frac{1}{2}$	-		+	+	+	+	-			1	-	SC

(Continued)
II
TABLE II (
16T-470
AEDC

	T	L							TEST	RU	N NI	JMBI	RS								75. 76	2	יוטיג.	
_																T				472		}	7	
1977	, DE	े ।	374	7.00	R	400	ý	3 8	3 8	1 5	2 3	2 2	12/2	9 8	126	2 5	7440	453	450	1			10VAR (2)	
SEPT	0 × 0	4	1	388	+	+		9,0	+	┪		73	+		+	+	43/	454		+	6	<u>`</u> -	† †Ξ	
30		2						+			\dagger	+		+	+	+	1	4	4	4			IDVAR (1)	
DATE:	S DIC	IA	373	387	377	382	394	ğ	403	412	415	419	127	170	1 2	5 2	444	452	448	470	19	-		
٥	C	ł.	1	(4)	10	M	M) K		7	1 7	7				+	4	4	4	4			1	
	ANCIE			.0	,0	-	-			_	igg			-	\bot	-		-	_		55	-	1	
MARY		1-4		38%	376	+	+	397			_	AIA	422			141	1		447	1	6	=		
SOM		9	372	88	375	380	393	396	401	411	414	417	422	427	227	424	443	451	446		49	-		
SET/RUN NUMBER COLLATION SUMMARY		-8																		468	43	1 1 .1		
כסרר																								l i
BER		Ø	0																	-	37	1	ENTS	
NON Z	}	Rn/L Mach	1.15	1.25	04'1	1.55	1.25	4	1.55	1.10	1.15	1.25	64	3	04	155	1.15	1.25	04.1	3.0		4	COEFFICIENTS	
T/RUI		R~/L	4.0	3.5	35	3.2	3.5	3.5	3.2	4.0	4.0	3.5	3.5	3.2	3.5	32	4.0	3.5	35	4.0 0.60	31	4	දී	
		860	-2			•	-5		•	0	_			-	7-	7	2-		-	8			, 4	1 1
DATA		26.2	의													-	12				25	4	°o	°
		8	Δ											<u> </u>		<u> </u> 			<u> </u>	J		1	-4°	-40
7			S																		61	4	-8	8-
(1st Entry)	AGIGIANO		SILTS	A F						1												}	<u>م</u>	8
	1014		+						-										-	-	-	4	J	4
25 A	Ś		PTS	METRIC					•													1		S
IAIC	SET	Ē.R	_	88	83	8	85	8	87	88	88	8	91	25	33	75	8	88	16	80	7	4	0 RO 10	
EST : IA105 A	DATA SET	DENTIFIER	R48*8		1	-		-				_						\dashv		_		4	8	SCH
	<u>. </u>	=1	<u> </u>		!																	1		

			L		_		-		۲	EST	RUI	N NI	JMB1	ERS								75.76	?]	Ž Z Z		7
	7		, α											523				T	T		1	7.5	-]		
	1977	2 DEC.		14	204	605	5/5	482	519	522	527	542		250	1/2	570	l v	1 3	00	-	4			10VAR (2)		1
	SEPT	X ×		1.0	╅—-			1-	 	3) is	u			+	+	+	+	-	581	584	67	-	٥		
	30 S] d	7	4	8	88	514	48		 			92.6	8 8	S	569	574	543					-	AR (1)		
		SIDESLIP	2																			. 19	1	TOVAR		
	DATE	OF S	10	475	499	188	513	88	518	521	526	531	6	557	563	568	573	542	577	580	583	4	 			
		1	١.											1	4,	l vs	()	(4)	0)	(1)	\ \ 	5.5	4 1 4			
	.	ANGLE	4	474	496	50¢	512	679				_	ا و	وا	Q	<u> </u>	14	-				,	1			
	MMAF			~		-				0	10	0	53%	 	562		572					6	4			
	S N		9-	473	497	505	511	478	517	520	525	530		555	561	566	172	540	576	579	582	49	1			
(pəi	SET/RUN NUMBER COLLATION SUMMARY		ω <u>-</u>					ļ					535										4			
(Continued)	COLL														j							43	1	. 1		
	BER		Ø	0	4		1	1	+	1	1							_	1			37	1	S 17		
II II	NON 7		Mach	80	80	0.95	1.05	0	1.15	153	8	15:	030	080	80	095	.05	0	1.15	125	Q		=	COEFFICIENTS	$\Big] \Big]$	
TABLE	/RUN		Rn/L Mach	40	1	4	1	-		35		3.2	4.0					1	_	3.5	3.5 1,		4		9	
	A SET		860	0	1	1	1		1	+				-		\dashv	-	1	\downarrow	\top		31	1	9	4	
	DAT.		001	2						1	7	>	0	7	1	#	1		1	- - -	<u> </u>		4	1		
			$\frac{1}{\sqrt{2}}$			_	1	\perp	\bot	1		1					j	1				25	1	4	4	
			<u>۲</u>	M			+	7	7	+	+	+	>	Ш		\mp	+	+	+	+	_		1		þ	
	(1st Entry)	× 0		SILTS	AIL						İ				Ì				ĺ		- 10 min	€]			
470	st E	CONFIGURATION		S +	MEIRIC TAIL								_				Í		÷				}	ار الم		
	11	CONF		W15	Σ												1			10		<u>-</u>]	<u></u>	7	
7	105			9	Ē∥						Į												}	β	ES	
AEDC	EST : IAIO5 A	DATA SET	0	7 7 7	\$ 5	7 2	3	\$ V	} {	9 [Z O	8	2	<u>a</u>	3 1	3 3	S 3	A à	8	à 8	8	~]	a or	SCHEDULES	
	rest	DATA SET	04040		+	+	+-	-	+	+	+	+	\dashv	-	+	+	+	+	+	-	^	-]	8	Š	
L .		,		<u>!'-</u>	Щ.					Ų.				_!_						\perp			1			

									TE	5 T	RUN	N U N	SEF	25			.,					5 76	7	C E	7
,	7.	و	ω	ĺ																			1	(2)	The state of the s
	7761	S ~ DEG	و	587								599	602	659	614							67	4	1.0VAR	
	SEPT	5~B	4										2503	803	613						÷		1	=	
	30	SIDESUP	2		\dashv								9		7								4	IOVAR	
	 Ш	SiD		اق	ø	Q	7	5.	5	9	7	8	-	7	7		-					61	1		
	DATE	Q F	0	386	588	589	592	593	545	546	247	598	601	607	612		_			-			1	3	
		ANGLE	-2																			\$5	4		
	ARY	7	7-										\$ 03	3	19								- - - -		
	SUMM		9	585								597	8	509	610							49	1	,	
(pa	T/RUN NUMBER COLLATION SUMMARY		-8																			43	1	-	
(Continued)	770:																-						4	ļ <u>}</u>	
	3ER C		ø	0				~	8		,	0			-							37	1	2 2 2	
E 11	NUME		Mach	1.55	0.10						*	1.15	1.25	04-1	1.55								1	OFFICIENTS	
TABLE	RUN	_	Rull P	3.2 1.	4.8	4.0	3.2	25	3.2	25	2.0	4.0	3.5	35	3.2							31	1	COF	
	ய		Seo	6	-	7					+	-2			-							Ü	4	0,0	
	DATA S		863	8											->							25	1		٩
																,							1	'	7
			४	۵	Ш				\exists		•	۵					-	-	-	-			1	80 0	
	()		z 0	SILTS	TAIL																	61	4	11	٨
011	(1stenty)		- X X O		1								* 1		*							13	4		
7-7			CONFIGURATION	+ S	METRIC																		-		
91 -	105			φτs	ME																	,	1	8	ıles
AEDC 16T - 470	TEST : IA105 A	A SET	IDENTIFIER	r B9	12	C2	C3	C4	S	7	C7	S	8	۵	22								7	ر م ع	SCHEDULES
	TEST	DAT	IDENT	R4B* B9											-										S
,		•											5	7											

		U		τ .	Y-					EST	RU	11 N	J₩B	ER	S									,		> 0 z	
	7	~ DEG																	T	Ī					-	Z (2)	
	(977	8	9				T				1	1	19	352				\dagger	\dagger	+			-			DVAR (
	SEPT	O.K.	4	-	510	1 2) h	2) a		-	+	<u> </u>	<u> </u>			╁-	+	+	\dashv	-			2	i -	1	
	30 \$	ATTAC			N	516	573	521	27.70	8,0		_	1	1		_	_	1	_		_					DVAR (1)	
	 W	4	2	ļ 																				5.		é	
	DATE	0	0	467							8	201															
		SLE					 	 		T			1	1				\dagger	+	+	+			5.5		}	i
	-	ANG			<u> </u> 		+	_	-	-	-	+	+	+			-	+	+	+	\dashv		-				
	IMAR				-		-	_	-	ļ	_	_	1	1			_								-	9	
	SUV																							64	-	٠,	
(pənı	SET/RUN NUMBER COLLATION SUMMARY																								-	o o	
(Continued)	סרר									\vdash		-	\dagger	\dagger				\vdash	\dagger	+	+			3	-	-40	
11 (C	ERC		8	0							8	10		+	-	-	_	-	-	+	-					15.0	
	NUMB		Mach	0.60	060	0 -	1.25	1.25	.55	13		<u> </u>		•	-			-	\perp	\downarrow	-			37		790 11 11 11 11 11 11 11 11 11 11 11 11 11	
TABLE	NON		NA NA	2.5 0.	Ö	=	=	-	1	3.2 1.55	40 1.10		6	1	-			<u> </u>	-	1	-	_			1	199	
	ET/F		Seo R	9 2						W	7		\	_	4			_	-	-	+	\dashv		Ē	1		
	DATA S		Ser S	2							8	8	5	1	-			_	-	+	+	-			-	4	ष
	DA		٥	_							-	w	<u>=</u> 	<u>- </u>	4			<u> </u>		+	-	-		25	4	o	all
	<u> </u>		8	<u>B</u>)	ঙ				-	I	1	1			<u> </u>	_	\dagger	\dagger	+	_		1	0 7-	
	\ <u>\</u>	_		N							S											Ì		19	1		,
Q	Entry	CONFIGURATION		SILTS	A F						OTS WSILTS	TAIL													1		4
4	(1et	-IGUR		+		Н				_	%														4	a d	3
16T		00 N		OTS	METRIC					.	TS	METRIC				l									4		
AEDC 16T-470	TEST: IAIO5A							_							1	_			_					_	1	В	JLES
AEI		DATA SET		R4B*D3	8	2	2	D7	08	8	Ш	E2	E3												1111	Q OR	SCHEDULES
	TES	DAT	10cm	R4F		1	_			1			-					İ							1		ă
-						<u>_</u>		,	<u>·</u>		<u>'</u>			<u>'</u>					<u> </u>	1				1			

1	M	-	T -	7	7	1		•	E31	1	1	1	1				T		1	, ,	.5	'	O Z	
8									1884			-							1737		,	[]	Carca
1.1	۶	Ju								98		-								1742	67	- -	IOVAR	
Feb	ACK	4	1773	1777	17-61	1975	979	1983	1883	688	88	198	1913	1941	1921	1929	1934	1939	138	141	-	- -	Ξ α	
-	T A	2																			discussion des	-	10VA	
ATE:	OF	0	172	27.71	26	1974	8761	1982	1887	888		903		_	920	_		938	735	740	9			Section 1
	GLE	-2									768	-	!		-		-				5.5	111		
	A	-4	17.1	775	696	973	977	186	881	887	_	202	8	216	616	925 1	932	937	73.4	739		1	, O	
SUMMA		-9	_				_	_			_		Y	_	Ť	_	<u>-</u>	_	_	1	49	1	4.	
TION		Н	770	174	8%	372	376	980	8	38%		100		114	318		131	35	733	38		1	,0	
OLLA		'	-		S.	2		-	-	1	=	51	61	10	51	J-	0	-	_	_	43	1	• ^	
BER C								\dashv			-										7.6	1		
WON 7		<u>م</u>	9.	1.55	1.15	1.25	1.40	155	0.60	0.80	8	960	8	0.1	1.15	1.25	140	1.55	3	>.80		1	1. J. J.	
T/RUN		₹ 2	3.5	3.2	3.5		-	3.2	3.5								>	3.2			31	4	S ,	
TA SE		म		1-7	-2	#	4	-	5	1								>	0	6		1	;	4
DA		4	9	\exists			1	7	+						\dashv	-	\dashv	1	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25	4		1.
_		8	耳	7		1	7		80	피	5	I	5	픠	エ	5	픠	픠	8	耳		1		#
17	z O		27.3						LTS							-			LTS	THE PARTY OF THE P	6	1	7-=	9
PALEN	GURATI			1	_		_		- 11		_	\downarrow	1	_				_ .	1681	*	9	1	80	970
11	CONFI		ν						9					-	İ			ı	_ []	The second second		1	- (-	
A 105) _ 0	1	_	2	2	4	101			<u> </u>	6		_	2	2	4	S .		1_	8	7	1	80	OULES
ST: I	ATA SE		QI,					1				<u> </u>) 		1	8	SCHEL
벨	ءَ ہ		٣																	-		1		
	-	(2-16-17) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: 1 Feb 1978 NATION ANGLE OF ATTACK ~ ~	(2mlentry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: 1 Feb 1978 ***********************************	(2ed Entry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Feb 1978 INFIGURATION ANGLE OF ATTACK ~ & S w/o SILTS A -2 O 2 4 6 S w/o SILTS B -7 351.40 1770 1771	(20-4 Entry) DATA SET/RUN NUMBER COLLATION SUMMARY NFIGURATION B	(2016 Entry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Feb 1978 ANGLE OF ATTACK ~ & S W/O SILTS H B -7 351.40 1770 1771 1772 1773 1773 1775 1772 1773 1775 1775 1775 1775 1775 1775 1775	(2nd Entry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Feb 1978 Infiguration A Set Sec Rul Mauh -B -6 -4 -2 O 2 4 6 S W/o SILTS I 770 I 771 I 772 I 773 S W/o SILTS I 774 I 775 I 775 I 775 S W/o SILTS I 774 I 775 I 777 I 777 I 7 3.5 I 15 I 968 I 978 I 971 I 7 1 25 I 972 I 974 I 975	(2nd Entry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Feb 1978 Infiguration A Set Sec Rul Maul -B -6 -4 -2 O 2 4 6 S W/o Siltrs H B -7 3.5 1.40 1770 1771 1772 1773 S W/o Siltrs H C -7 3.5 1.40 1774 1775 1776 1777 1777 S W/o Siltrs H C -7 3.5 1.55 1774 1775 1776 1777 1777 S W/o Siltrs H C -2 3.5 1.15 1968 1969 1970 1971 1971	C2nd Enthy DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Feb 1978 Infiguration A Set Sec Rul Mach -B -6 -4 -2 O 2 4 G S W/o Sillts 1770 1771 1772 1773 S W/o Sillts 1774 1772 1773 1777 A Los Sillts 1968 1969 1974 1975 A Los Sillts 1972 1974 1975 1975 A Los Sillts 1972 1974 1975 1975 A Los Sillts 1972 1974 1975 1975 A Los Sillts 1976 1974 1975 1975 A Los Sillts 1976 1976 1975 1975 A Los Sillts 1976 1976 1975 1975 A Los Sillts 1976 1976 1975 1975	(2mlentry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Feb 1978 NFIGURATION A Set Sec Rul Malh -B -6 -4 -2 O 2 4 6 S w/o siltrs H B -7 3.5 I.40 1770 1771 1772 S w/o siltrs H -2 3.5 I.40 1774 1772 1772 S w/o siltrs H -2 3.5 I.40 1774 1772 1772 H -2 3.5 I.40 1774 1772 1772 1772 H -2 3.5 I.45 1968 1969 1970 1971 H -2 3.5 I.15 1972 1972 1974 1975 H -2 3.5 I.15 1976 1976 1975 1975 H -2 3.5 I.15 1976 1976 1976 1975 H -2 3.5 I.55 1976 1976 1976 1975 H -2 3.5 I.55 1980 1981 1982 1983 H -2 3.5 I.55 1980 1981 1982 1983	Camerity DATA SET/RUN NUMBER COLLATION SUMMARY DATE :	C2MEntry DATA SET/RUN NUMBER COLLATION SUMMARY DATE:	C2nd Entry DATA SET/RUN NUMBER COLLATION SUMMARY DATE : 1 Feb 1978 1978	TEST: IA IOSA (24 Entry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: 1 Feb 1978	TEST: IA IOSA (20 Lenth 1) DATA SET /RUN NUMBER COLLATION SUMMARY DATE: I Fe b 1978	TEST: IAIOSA (200 Entry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Fe b 1978 DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Fe b 1978 DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Fe b 1978	TEST: IANOSA (2nd Entry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE	TEST: IA IOSA (24 Enthry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE: I Feb 1978	TEST: IANOSA (2004Entry) DATA SET/RUN NUMBER COLLATION SUMMARY DATE 1 Feb 1972	TEST: IANOS A (2004E-1177) DATA SET/RUN NUMBER COLLATION SUMMARY DATE 1977 1	TEST: I A I O S A (2 ME n h h h) DATA SET/RUN NUMBER COLLATION SUMMARY DATE Feb 1977	TEST: IANDS A (Zementy)	TEST: IANOS A (Zedentry)	TEST: IAIOS A (Zewicutation Data Settrum NUMBER COLLATION SUMMARY Date 1 Fee 1978

			E.	_	Į.	ν	~	· ·		T	EST	RU	N NL	MB	ERS								75.76		> 0 Z	
	978		· ~ DEG.	60									767	2							2053		7.5	-]	
			۲ ۶	૭										91 2	0	1			T		12	2048	- August		IDVAR (2)	TO ACCULA
	Feb		TACK.	4	544	1548	1552	1582	1564	1221	1578	1582	1622	+	┿	160	2 9	3	909	1612	2052	2047 2	67	- -		
	_		l H	2	_	=			1 2/	37	-	=	12		- -	2 2	5 R	<u>ة</u> رَ	79	1 2	8	8	- CAN 100 C	-	DVAR (1)	
	и 		1	_	543	47	21	=	8	Q	1		<u> </u>) +	σ	3 8	_		-	.0	61		ם י	
	DATE			0	15	1547	1521	1561	1566	1570	1577	<u>88</u>	1621	9791	P	3 6	1598	503	1607	1611	205	2046		-		
			コンクマス	-2		. 0	_						·										55	-		
	IARY	*	7	4-	1542	1546	1550		1565	1569	1575	1580	1620	1615	8	1.67	1597	1602	1606	1610	2050	2045		4		
	SUMN		-	-6					1564												7	2	49	4		
(pər	SET/RUN NUMBER COLLATION SUMMARY			0	1541	545	549	553	1523/	1568	1573	1579	6191	1614	1588	1592	1596	003	1605	609	2049	44		4	'	
(Continued)	0LL.A	_		1	7					=	5	15	2	7	5	15	5	9	2	3	8	2044	6	1		
	ER C		F	+	_	4	_		_	-						_								1	~	
TABLE II	NUMB		F	5	8	26:0	1.05	0 -	1.15	.25	8	55	9	Q	Q	6	5	0	-50	5	0	0	6	1	COEFFICIENTS	
TAI	RUN		,	2	35 090	Ö			1	<u>`</u>	7:-	3.2 1.	2000	080	0.0	295	las	<u></u>	1.15	125	090	080		4	200	9
				o l	\(\frac{1}{2}\)	1	1	1	_			1	9 3.							7		<u> </u>	ā	1	0	9
	DATA		2		<u> </u>	\Rightarrow	+	1		1	1	1	+					\exists	1				Ì	1	- 1	
					1	1	1	1			1	1	1	1					-	1	+		₽ .	1		#
		Ш	4	<u> </u>	<u> </u>	+	+	\mp	+	+	-	<u>- </u>	8	듸			\dashv	\exists	,		ω:	I		1	7-40	
,	1	2	<u>.</u>	71 15									2]					i i	<u> </u>	- Anna Constitution of the	₽ .	1	11 1	
470	(Znd Entry	URAT		× //×									SILTS								70 SIL	GEOLUL E		1.	Ba	9
6T-		CONFIGURATION		1	11							ı,	+ - 		1							-	= -	1	യിച	
U	105/	U		GTS								14	all e											1	- U	
AEDC 16T-470	TEST : IAIOSA	DATA SET	FIER	4F * 37	9	3 8	5	3 3	\$ 5	र्म	3 3			9 1	47	8	67	श्री	<u> </u>	- 1		5	-	1	CHEDILLES	
	EST	DATA	JOENTIFIER	R4F	$\ \cdot\ $	+	1	+	+	+	+	+-	+	+	+	+	+	-	+	igg	-			1	9 N	
L			(11	4_	1_			1		1		60						<u> </u>				_		1

			3							т	EST	RU	v NI	JM B	ERS								-,		5 76	> 0 2	
	0		2								1993											1532				z Ñ	
	876) 0		, `	9								8661				+	1						1540		à _	IDVAR	
	Feb	1		4	1/46	1750	752	1758	1762	1766	1992	1997	2	1 26	333	2002	2014	15.34	1638	164	6331	1531	+	_#		AR (1)	
	-	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	-	1																				A. 1		IDVAR	
	DATE				3	1749	1753	1757	136	1765	199	1996	800	1		5	2013	16.33	1637	1641	1648	1530	1538	WEST COLUMN			
		1014	1	\perp							_													5.5	-		
	MARY		\\ \	1 1	- !	1/48	1752	35/	36	17.4	1990	1988	88	38	2000	3 3	202	1632	353	92	1647	1529	1537		-		
	NO SU		14-	1_	1 -		1			2	•	₩.		1 20					,			~		64	-		
(Continued)	LLATI	-	٩	1742	17/1	<u> </u>	15/-	8 6	(0)	763	1989	1994	1999	2003	2007		3	165	1635	539	1646	1528	1536	43	1		
(Cont.	ER CO		L		-	-	-	-	+	-					_		1				-				- - -	ร	
TABLE II	SET/RUN NUMBER COLLATION SUMMARY		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8.0	980	5	3 9	2 1	2 3	153	90	080	0.30	28.0	185	Ç	2 1	0	1.25	8	1.55	0,60	080	37	4	COEFFICIENT	
TAE	T/RUN		74	3.5	П				1		Ĭ			U							32 1.	Ŋ	350	31	1	COE	9
	DATA SE		Ser Seo	i i	┼		\pm		+	-	=	+				>	. ? .	4	+	-	-	S	5		4		9
	Δ			3					1			1												25	1	,4	°
ŀ		dash	8	I			+	+	‡	4		<u> </u>	\dashv				上	+	+	- ,		8	I.		}		7
Q	(2nd Entry)	7 O F		SILTS											l		SILTS					211.15	THE PROPERTY OF	19	alana	8=-4	8=-6
		CONFIGURATION		S W				-	+	1	+		\dashv	+		- p ->	+		-	+	ı	7031L1	Salata California	13	1	(a)	司
7	105 A	S		OTS											_		\$T\$					2	Name of the Owner, where		1	8	ES
AED	TEST: IAIO5A	DATA SET	DENTIFIER	R4F*19	70	71	22	23	24	1	2	27	77	87	82	B	15	CZ	3 5	7 7	3 ;	3 1	3	7	1	9 0 8	SCHEDULES
	E.	٥ !		R							I	1	1		1								-	-	7		<i>S</i>
														61									-				

: 2 .	1 E S 1 TA 105 A (2	(2md Entry)	•	•			The second second	THE REAL PROPERTY.	Charles and Artist							
				DATA SE	ET/RUN	SET/RUN NUMBER COLLATION SUMMARY	OLLATIC	MUS NO	WARY		DATE:	7	Feb	A761	α	
DATA SET					T. V.		TANK TOTAL TANK									
IDENTIFIER		CONFIGURATION							∢	ANGLE	0	F	ATTACK	ر ا	12	200
R4F*SS	Ł	W/ STITE		SOI SES	¥	Mach	- B	9-	7-	-2	0	2	4	7	Q	iL
	2	-	#	<u>- </u> 0 .	3.5	060	2039	9	2041		2062		27.6		ס	
	25		1	1	1	26:0	2027		2028		2029		200			
	6	1	1	+		58.	203/		2032		2033		72%			
	3 8		1	A	1	0/-1	2035	10	2036		2057		9			
	50 5		1	12 -7		40	1674		1675		1676		11.7			
	3 -7		1		3.2	155	1678		1679		83		<u>8</u> 8	1		7
	(2)		1	71-	3.5	1.15	16.55		ठड्य		1657		853			EST
	8 5			#	+	125	16.59		1660		1661		1662			RUF
1	3 3	- -; 	#	-	-	9	1663		185		1665		79991	-		1 NL
+	\$ 4		1		3.2	1.53	1667		1668		6991		1670			MBE
	3	80 =	1	5	3.50	0.60	1818		1819		1820		1821	=	183	RS
	8 5	I I	#		0	080	1823		1824		1825		† ,	1845	3	
	0 3		1		0	060	1827	1828	1829	1830	1831	1832				
7	5	I +	\pm	$oxed{I}$	0	0.95	1634		1835		1836	_	1837			
	2	r =				202	838	1839	088	1841	1842	1843 1	1844			
				1	1	0	1846		1847		1848	_	648	-		
	2	L	1	-		1.15	1850	-+	1881		1852	_	883	-		
100000000000000000000000000000000000000		7			7	25	1854 855		1856 1857		1858 1858	1839	028	-		
1	13	19	. P		10	37	43	49		55	9		67		75.76	9
		1	┥ ┥ ┥		447		عفنمكم	4	1	1	1					
α OR β SCHEDULES	A B BOULES H	0.8 = -4.0	, d 4	4°0		CORPTICIENTS =	-, 8-	000	4.	ô		10VAR (1)		IDVAR (2)	>oz 2	1 >
																-
																7

TABLE II (Continued)

	\prod	ي							T	EST	RUN	NUN	BEF	₹\$								5 76	_	> 0 z	
		~ DEG.	Ø			728			,					1792								,	-	(2)	
	1978	8	9				201								197								1	DVAR	
	Feb	Ω X		75	αg	77		11	39	S	6	3	1	 	J	=	VQ	\$	13			67		-	
	ĬĽ.	ATTAC	4	1864	1868	1697	Q -	1171	1709	SILI	1719	1723	17271	1791	1796	8	1808	608	1813				1	DVAR (1)	
		A	2						,													19	1	ō	
	DATE	OF	0	1863	1867	1696	1700	1705	0171	1714	1718	1722	1726	17%	1795	880	1804	908	1812	,			111		
		ANGLE	2																			5.5	111		
	≿	A	4	1862	1866	5691	6691	1204	170B	2113	לונו	121	222	189	1792	1799	1803	1807	1811				111		
	MMA		- 9	16	~	16	Š		1		-	-	-	-	-		33	18	=			69	1		
	S S)-		2	1	8		7	- 2	9		J	89	~	•	2	. a					1		
(na)	COLLATION SUMMARY	L	8 -	1861	1865	1694	1698	1703	17071	2171	17اك	0271	1724	1788	1793	1798	1802	180c	1810			43	1		
(colletifued)								:				-											4	1	
	(BER																					7.	4	EN 1S	
רב דד מי	SET/RUN NUMBER		Mach	1.40	1.55	3.0	0.80	060	0.95	50	0	1.15	1.25	0.60	080	060	560	50	0				4	COEFFICIENTS	9
IADLE	/RUN		RM	3.5	3.2	35													1			31	4	S	4
			Seo	ડ	5	6	_						-	11					1				=	i	'n
	DATA		Ser	12	_														•			23	}		٠ ا
			_	-		~								В	I						_		4	0	
		H	8	Ξ	Ξ	8	퓌														-	61	}	-4	9-
	(2nd Entry	Z		LTS					ł		İ]	B =	8
- 47C	2 mul E	CONFIGURATION		% SILTS					_	_		_							_			2	1	B	刊
AEDC 16T- 470		NOU		φτs ,						.													1		
DC	A 105	-	<u>~</u>		74	72	-	7	38	79	8	_	7	8	ন	Ŋ	9	1	80		4	_	4	80. E	ULES
AE	TEST: IAIOSA	DATA SET	IDENTIFIER	R4F*73		7	76	17			8	8	8	80	88	88	8	87	88				1	0	SCHEDULES
	TES	ď	JOE	A 4																			1		\bot
								, •					6	3 '	•										

TES	TEST: IAIO5A	105 A (2nd Entry)			DA	DATA SE	T/R	N N	ET/RUN NUMBER COLLATION SUMMARY	OLLATI	NO.	SUMMA	RY	<u>ال</u>	DATE:	-	Feb	1978	80	7
1 40	¥ 4.6.7		-										ANA	ANGLE	OF	FA	ATTACK	اع	~ Dec	ی
IDEN	DENTIFIER	CONFIGURATION	1	2 0	Ser	lo	80 Rh/L	1 Mach	۲	U	0	9	4	2	0	0	4	૭	80	
R4F	F#89	OTS 1 SILTS	1		8	1	3.5		2			1957			8 61			6561		
	8			2				0.95	2		-	0%			1961		·			
	16							1.10				1948			6761			0261		
	26			2				0.1				1561			2561			1953		
	33			3				1.10	(1954			19555			1956		
	8							1.40	-		-	1945			1946			1947		TE
	3 2				0	=		0.80	C		2	2018			2019			2020		ST F
	8			3	ļ.			08 0	C		2	2021		,,,	2022			2023		NUF
	16			3	<u> </u>	-		0.95	15	-	2	2024			2005			2026		NUM
	82			×	12	5		1.40	2		=	1869								BER
	8			1 2				140	-			1874	-		1876			1875		s
	8			3	- 1		-	1.40	0			1873			1872			1871		
				-	_	_				_										
				-				_												
				-							\vdash									
				\vdash																
					_						\dashv		\dashv							
							_			\dashv	\dashv	\dashv	-	\dashv						T
_		13	6		52		<u>=</u>		37	43		49		55		19		67	1	75.76
4	4	Linearthorns	4	1	4	4	4	1	4111	4	4	1	1	4	1	4	1	4	7	1
	2 0	$K \Rightarrow \phi = 0$	0	±30°,	+1	.09	190	OEFF.	# 90 + 100			(Z	1=625	25.		10VAR (1)	18 (3) 	10VAR (2)	- i	> ·
	SCHEDULES	= 0 (7	•	£30	,		·			i										

AEDC 16T-470

TABLE II (Continued)

TEST	TEST: TAIOS A (2-15-1-)									İ			7 A T E		į			Γ
	1	_	DATA		T/RL	N N N	SET/RUN NUMBER COLLATION SUMMARY	CLA,	NOL	Z WW OS	ľΑΥ		<u> </u>			2/0	0	T
DATA SET	ET CONFIGURATION	Ш									4	ANGLE	OF	A	TACK	\ \ \	1	DEG.
IDENTIFIER		8	٥	Ser Seo	O RML	Mach		H	8	9	4	7	0	2	4	و	80	
R4F*R	RI OTS + SILTS	0	80	2	3.5	3									1885			
	R2				_	080						•			1881	-		
	22					060									8/-			
	R4					0.95									1905			
	RS					01.10									1917			
	R6					1.15									1922			Τ.
	R7 .					1.25	-								1930			EST
	RS				>	140	-	-	-						1935			RUN
—	K9	,		*	3.2	1.55	_	 -	-						8			NU
6.					_													MBE
5				_			_	<u> </u> 										RS
					_													,
			-	_	_		-											
				_			-	_										
l								-										
								_										,
-	91 81 7		25		3.		37	43		49		55		61		67		75 76
1		1	4444	4	4	4444	444	1	-	1 1	1			1	1		1	4
	80 80					COEFFICIENT	R Z 3							70-	DVAR (1)	IDVAR	(3)	> 0 Z
SOH								•	•									
									,	To the second		N.	Market Street		Contraction of the last	ALC: DESTRUCTED		

TABLE II (Continued)

Sweep Schedules:

Pressure Data 4th Character ID	Description
В	Orbiter Fuselage
E	Orbiter Base
F	Body Flap - lower surface
G	Body Flap - upper surface
J	Miscellaneous
L	Wing - lower surface
M	ET - protuberances
N	SRB - protuberances
O (numeric)	Orbiter force data (see balow)
S	SRB surface
T	ET surface
Ū	Wing - upper surface
v	Vertical Tail

Force Data 1st Character ID	lst Ind. Var.	2nd Ind. Var.	Coefficients
R	ALPHAO	BETAO	CN CNF CA CAF CLM CLMF CY CYN CBL
S	ALPHAO	BETAO	CNW CTW CBW CHEI CHEO IB-ELV OB-ELV ALPHAI PHII MACH
T	ALPHAO	BETAO	CAVU CAV CSV CZV CMV CTV CBV ALPHAT BETAT ALPHAS
υ	ALPHAO	BETAO	MACH P PT Q(PSF) TT RN/L AFA BFA ALFC
v	ALPHAO	BETAO	ALFAOU BETAOU ALFETU BETETU
W	ALPHAO	BETAO	ALFASU BETASU DEINR DEONR CNB CAB CLMB CABVT XCPV ZCPV CNSTNG

TABLE II (Concluded)

R dataset pages 1-113 S dataset pages 114-225 T dataset pages 227-339 U dataset pages 340-452

V dataset pages 340-432 V dataset pages 453-555

W dataset pages 556-678

First Entry (Volume II) Pressure Data

Pressure Data		Print Normal	Microfiche
4th Character ID	Description	Page No.	Page No.
_		1 2/06	1-40
В	Orbiter Fuselage	1-2486	_ :-
E	Orbiter Base	10,091-10,733	162-175
F	Body Flap - lower surface	10,734-11,291	175-181
G	Body Flap - upper surface	11,292-11,849	181-189
J	Miscellaneous	11,850-12,311	190-197
L	Wing - lower surface	2487-6309	40-101
M	ET - protuberances	12,312-15,997	197-25 5
N	SRB - protuberances	15,998-16,834	255-269
S	SRB surface	16,835-18,443	269-294
T	ET surface	18,444-21,623	294-345
U	Wing - upper surface	6310-9761	101-156
V	Vertical Tail	9762-10,090	156-161

Second Entry (Volume III) Pressure Data

Pressure Data		Print Normal	Microfiche
4th Character ID	Description	Page No.	Page No.
В	Orbiter Fuselage	1-203	1-4
E	Orbiter Base	1937-2646	31-43
F	Body Flap - lower surface	2647-3243	43-52
G	Body Flap - upper surface	3244-3840	52 - 62
J	Miscellaneous	3841-3953	62-63
L	Wing - lower surface	204-877	4-14
N	SRB - protuberances	3954-4150	63-66
S	SRB surface	4151-5187	66-83
T	ET surface	5188-6475	83-103
Ū	Wing - upper surface	878-1936	15-31

TABLE III. ELEVON DEFLECTION ANGLES

INBOARD	ELEVON ANGLES	, DEGREES
NOMINAL	LEFT HAND MEASURED	RIGHT HAND MEASURED
12	12.45	12.683
10	10.58	10.250
8	8.32	8.533
14	4.45	4.58
0	0	0
		:

OUTBOARD	ELEVON ANGLE	s, degrees
NOMINAL	LEFT HAND MEASURED	RIGHT HAND MEASURED
+2	2.23	2.42
0	0	o
-2	-1.76	-1.833
- 5	-4.98	-4.98
-7	-6.82	-6.90

TABLE IV. BALANCES UTILIZED

ORBITER BALANCE - 1ST ENTRY

Task 1.5" MK XXII

COMP	RATED LOAD
N1	2000 lbs
N_2	2000 1bs
A	600 lbs
Y 1	1000 1bs
Y ₂	1000 lbs
e –	1600 in-1bs

ORBITER BALANCE - 2ND ENTRY

Task 2.5" MK XXII

COMP	RATED LOAD
	2522 41
N ₁	2500 lbs
N2	2500 lbs
Α	800 1bs
Y 1	1000 lbs
Y2	1000 lbs
L	4000 in-1bs

VERTICAL TAIL BALANCE

Lockheed 1" 10033

COMP	RATED LOAD
Norma1	700 lbs
Side	500 lbs
Axial	125 1bs
Roll	1200 in-1bs

TABLE IV. BALANCES UTILIZED (Concluded)

WING LOAD INDICATOR

COMP	RATED LOAD
Normal	378 lbs
Bending	1850 in-lbs
Torsion	938 in-1bs

ELEVON HINGE MOMENTS

COMP	RATED LOAD
Inboard	110 in-1bs
Outboard	110 in-1bs

GAGED STINGS

2" AEDC Stings - 4 Components each

Used for sting deflection determination only - rated loads unknown.

TABLE V

BAD PRESSURE DATA LIST FIRST ENTRY

COMPONENT	DATA SET IDENTIFIER	<u>B</u>	<u>a</u>	TAP NUMBER
ORBITER FUSELAGE	R4BB28	-8 -6 -6 -4	4 -8 -4,-8,0 8 -4 0,4,8 ALL ALL	97 98
	R4BB29	0 4 4	-8 4	103,104,106→111 108→111
	R4BB30	-6 -4 -,4,6	-4 4 -8	97→104 98→102 97→104
	R4BB32	-4 0	4 ALL	97+104 97+104 46,56,95,96,97,99+102
	R4BB36	6	-8	141
	R4BB57 R4BB58	6 -6	ALL	112 33+40
	K40000	-6 0 6	-8,0 -8 -4	33+40 33+40
•	R5BB59	6	4	33-40
	R4BB60	0 4	4 0	33+40 33+40
	R4BB98)	ALL	ALL	192
	R4BBE2) R4BBD3	ALL	ALL	184
ORBITER BASE	R4BE28)			
ONDITER DASE	↓ }	ALL	ALL	311,312
	R4BE53) R4BE68)			
	4 }	ALL	ALL	301,302,308
	R4BEE3)			
BODY FLAP -	R4BF28)			
LOWER SURFACE	R4BFE3	ALL	ALL	420
	R4BF58	-6	-8,0	428,433-436
		0 6	-8 4	428,433+436 428,433+436
		•		•

COMPONENT	IDENTIFIER	<u>B</u>	<u>a</u>	TAP NUMBER
BODY FLAP - LOWER SURFACE (Contd)	R4BF59 R4BF60	6 -4 0 0	4 -4,0 -8,4 4	428,433→436 428 428 433→436
	R4BF61 R4BF64	4_ -6,-4 -8	0.	428,433→436 417 435
BODY FLAP - UPPER SURFACE	R4BG58	-6 0	-8,0 -8	429 - 432, 437 - 440
	R4BG59	-6	-4 4	429
	R4BG60	6 -4	-4,0	429→432, 437→440 429
		0 0 4	-8 4 0	429 429→432, 437→440 429→432, 437→440
WING - LOWER SURFACE	R4BL28) →R4BLE3 }	ALL	ALL	618,619
	R4BL28	ALL -8 -8 -6	ALL 4 8	900 103,104,786,802+818,833+847 809,810,818,833+847
	-6,-4 R4BL29		-8 ALL ALL -8	103,104,809→816,818,833→847 685 900
	-6,-4 R4BL30	,0,4 ALL	ALL ALL	809+816,818,834+844 685 900
	-4	-6 -4 ,4,6	-4 4 -8	103,104,809+816,818,834+844 810+816,844 103,104
	R4BL31	4,6	-8	809+816,818,833+844
	R4BL32	ALL -4	ALL 4	900 103,104,809-816,818,833-844
	R4BL33	ALL O 4	ALL -4 4	872 103,104,809+816,818,833+844 809+816,818,833+844
	R4BL34	6 -6 -4	0 -4 0,4	812+816,833 103,104,809+816,818,833+844

COMPONENT	IDENTIFIER	<u>8</u>	<u>a</u>	TAP NUMBER
WING - LOWER SURFACE	R4BL35	-6	0	103,104,809-816,818,833-844
(Contd)		-4	4	11
(00)		0	-8	H
	,	. 0	0	" "
		4	-8	. 0
		6	4	H
	R 4 BL36	-6	-8,-4,0	
		0,4	4	809-816,818,833-844 103,104,809-816,818,833-844
	R4BL37	-4	-8,-4	103,104,809-2010,810,833-244
		4	4	809+816,818,833+844
		4 4	0,4 -8	809,810,811,833-844
	D4BL 20	-6	-0 -4	809-816,818,833-844
	R4BL38	-4	0	103,104,809-816,818,833-844
		0	4	809-816,818,833-844
		4	0,4	809-816,833-844
		6	-4	104,809 > 816,818,833→844
	R4BL39	-6	-8	103,104,809-816,818,833-844
	KIDLOS	-6	-4,0	810-816
		-6	-4	818
		-6	0	818,834 -8 44
		0	-4	103,104,818,834-844
		0	-4,0	809→816
	•	0	0,4	818,834 - 844
		0	4	810-816
		4	-4,4	809-816
		4	4	818,834 + 844
		4	-4	103,104,818,833 - 844
		6	-8	103,104 809+816,818,833+844
	DADLEO	6	-8,0 ALL	781
	R4BL58	ALL ALL	ALL	900
	R4BL64 R4BL66	ALL	ALL	872
	R4BL67	ALL	ALL	748,872,902
	R4BL68	ALL	ALL	748
		-6	-8,-4	872
		0	0,4	900
		4,6	ÁĹL	900

COMPONENT	IDENTIFIER	β	<u>a</u>	TAP NUMBER
EXTERNAL TANK -	R4BM32	ALL	ALL	1600→1650
PROTUBERANCES	R4BM75	-6	-4	ALL
	R4BMA2	-6	-4,4	1767+1797
		-4,4	4	1767→1794
	R4BMA3	6	-4,0	1767→1786
	R4BMA4	6	4	1767→1786
	R4BMA7	6	-4	1767→1786
	R4BMB2	-6	-8	1767→1797
		-6	-4	1762+1798
		-6	4	1767→1798
		-4	-4	1767+1798
•		-4	0,4	1762→1798
		4	-8	1762→1798
		4	-4	1763→1798
	R4BMB3	4	-8	1767→1797
	R4BMB4	-6	-4	1767→1797
		4	-4	1762→1798
	DARMOE	6	4	1767→1781
	R4BMB5	-6	-4	1767+1798
	*	0	-8	1767→1797
	R4BMB6	6	0	1767+1797
	R4BMC1	6	0	1762→1798
	R4BMD3	0	4	1762→1798
	K4DMU3	-4,0,4	0	1745
	R4BN53	-6	4	2346,2348,2351,2352,2301,
PROTUBERANCES				2359
	R4BN57	-6	4	2360
SRB - SURFACE	DARCOO	_		
SKD - SUKTACE	R4BS39	-6	-8	2042,2043,2044,2046
			ALL	2041
		-6	-4	2043,2044,2046
		-6	0	2042
			ALL	2043
			-4,4	2044
		-4 - 0	8,-4	2041,2042
		0,4	0,4 ALL	2042,2043,2044
		4	ALL 4	2041
		*	4	2043

COMPONENT	IDENTIFIER	<u>B</u>	<u>a</u>	TAP NUMBER
SRB - SURFACE (Contd)	R4BS39	4 6 6 -6	-4,0 -8,4 -8,0,4 ALL	2042,2044 2043,2044 2041,2042 2011,2024
EXTERNAL TANK - SURFACE	R4BT30	-6	-8,-4	1018+1020,1023+1025 1219+1221,1228+1230 1233+1235,1248+1250 1223,1224,1237+1240, 1252+1254
		-6	-8	1021,1022,1209,1213,1217, 1218,1222,1225,1227,1231, 1232,1236,1246,1247
		-6	-4	1022,1217,1218,1222,1225, 1227,1232,1236,1241,1243, 1251
		-4	-4	1230
		-4	-8	1021,1230,1246
	-4			1018→1024,1209,1210,1212,
	R4BT31	-6	-8	1213,1217-1254
		-6	-4	1020,1227
			4	1018 - 1021, 1025, 1218, 1219,
		0	4	1225,1227,1231→1233,1236,
	•			1223,1227,1231,7233,1230,
				1237,1243,1246,1247,1252
•	R4BT32	-6	-4	1020,1021,1023,1024,1231,
				1245,1253
		-6	4	1022,1236+1238,1246,1252,
		_	•	1253
		-4	4	1244
	R4BT39	-6	-8	1054,1071→1073,1074,1085→
	CCIOFA	Ū	•	1087,1089,1091,1092,1380,
				1387,1516+1518,1523+
				1525,1527→1529,1536
		-6	-4	1059,1076,1071,1387,1518,
		-0	-4	1522,1523,1524,1527→1529,
				1535,1536
		_	Α	1056÷1059,1078,1080,1098,
		-6	4	1000 1266 1267 1271 → 1273
				1099,1366,1367,1371→1373,
				1387+1390,1392+1398,1400+
				1402,1413+1415,1417+1420,
				1422,1423,1554-1559,1560,
				1562,1564,1568÷1573

COMPONENT	<u>IDENTIFIER</u>	<u></u> 8	<u> </u>	TAP NUMBER
EXTERNAL TANK -	R4BT39	-6	0	1425
SURFACE (Contd)	***************************************	-4	0	1425
,		-4	U	1078+1082,1084,1504,
				1551+1553,1555,1557,
		-4	4	1560-1567,1574
		-4	-4	1062→1065,1067→1069,1091,
		-4	-8	1400→1425,1501→1529
			-0	1088,1144,1353+1355,1404,
				1409,1411,1412,1422,1424,1425,
		0	0	1512,1514,1515,1526,1528,1529
		U	U	1064,1065,1142,1143,
				1387→1389,1400→1402,
				1404+1407,1409+1411,
				1413+1415,1417+1420,
				1422→1424,1501→1503,
				1507÷1509,1512÷1514,
		0	4	1516+1519,1521+1523
•		_	•	1062→1064,106 6 →1069,1078, 1080→1085,1402,1403,
	•			1406÷1412,1415,1416,
				1419+1425, 1504, 1505,
	•			1508+1515,1518,1519,
				1522→1529,1560→1562,1564
		0	-8	1064,1066,1068,1070,1073,
				1075,1077,1078,1080+1084,
				1382,1395,1408,1407,1416,
				1417,1420,1421+1425,1519,
				1520,1525→1529,1530→1534,
				1538,1541+1545,1546+1548,
				1555→1559,1560→1567,
				1569→1573.1574
		0	-4	1074-1077,1088-1090,1524,
		_		1530+1534,1542,1543
		4	-8	1070→1073 , 107 4, 1075,1077
				1079,1082+1087,1091,1367
				1368, 13/3, 1387, 1392.
	•			1526→1529,1535→1545,
			_	1546→1573
		4	4	1063,1078,1081,1082,1147,
				1405 + 1407, 1409, 1414, 1517
				1540,1552,1553,1554,1560
				1561,1568,1570,1572,1573

COMPONENT	IDENTIFIER	<u>· β</u>	<u>a</u>	TAP NUMBER
EXTERNAL TANK - SURFACE (Contd)	R4BT39	4	0	1062,1065+1069,1077,1079+ 1081,1084+1087,1088+1090, 1092,1093+1095,1144,1147+ 1149,1413+1425,1501+1510, 1512+1515,1530+1539,1542+ 1525,1546+1553,1556+1559,
		6	-8	1560+1567,1570+1573 1063+1066,1068,1069,1077+ 1080,1082,1083,1085,1087, 1088,1089,1091+1094,1143, 1402,1406+1409,1412,1413, 1414,1417,1421,1507,1509, 1512+1515,1516,1518,1521, 1523,1526+1529,1537,1539+ 1545,1551,1553+1559,1560, 1561,1567,1570+1573
		•	A	1064,1417
		6	-4	1062,1409,1410,1412,1420,
		6	0	1526,1527
		6	4	1054+1059,1060+1101,1364+ 1373,1374+1425,1501+1573
	R4BT57	-6	4	1102,1104,1107,1108,1114, 1116,1127,1141,1546,1547, 1556,1558,1559,1560,1561, 1566+1569
	R4BT63	0	-8	1040,1041
	R4BT99	±4,±6	-8	1182,1183
	R4BTA7	6	-4	1402+1405,1408+1411,1416, 1417,1419,1421+1424,1516+ 1520,1523+1527
	DADTAG	-8	-4	1182,1183
	R4BTA9			1182,1183
		0	-8	
		4	-4	1182,1183
	R4BTB6	6	0	1408,1409,1421,1422, 1516→1527
	R4BTE3	6	-6	1184+1186,1189,1195,1196, 1200,1202,1208,1209,1217, 1218,1222,1223,1224,1226, 1232,1236+1242,1247,1251+ 1254,1205,1206

COMPONENT	IDENTIFIER	<u>β</u>	α	TAP NUMBER
WING - UPPER SURFACE	R4BU28	8	8	818+833
	R4BU29 R4BU30	-8 -6 4 -6	-8 -8,-4,	4
	R4BU32	-4 4,6 -4	-8,-4 -8 4	
· · · · · · · · · · · · · · · · · · ·	R4BU33	0 4 6	-4 4 0	
	R4BU34	-6 -4	-4 4,0	
	R4BU35	-6 -4,6 0 4	0 4 -8,0	
	R4BU36		-8 -8,-4,0 4	
	R4BU37	-4 Δ	-4,-8 -8,0,4	
	R4BU38	-6 -4 0	-4 0,-8 4 -4,0,4	
	R4BU39	6 -6 -4 0 4	-4 -8,0 -8,4 -4,0	
	R4BU40 R4BU41	6 6 ALL		818 - 833 693 693
	R4BU42 R4BU30 → R4BU46}	ALL ALL		693 861
	R4BU47	-6		693
-	+ R4BU49 } R4BU47	ALL O		861 693
		ALL -8	ALL	693 693

COMPONENT	IDENTIFIER	β α	TAP NUMBER
	SURFACE R4BU51	ALL ALL	693
·(Contd)	R4BU54	ALL ALL	693,861
	R4BU55 ∤ →R4BU57 /	ALL ALL	861 .
	R4BU62	-6,0 ALL	693
	R4BU62	ALL ALL	861
	R4BU63	ALL ALL	861
	R4BU65}, →R4BU67}	ALL 'ALL	827,828
	R4BU66)	A1 . A1 .	
	R4BU71 ∤	ALL ALL	861
	R4BU64 \	ALL ALL	706
	→R4BU69 ∫	ALL ALL	796
	R4BU72 } →R4BU75 }	ALL ALL	796
•	R4BU74 (ALL ALL	861
	→R4BU97 / R4BU81		
	R46061	-6 -8,-4 -6 -4	796
	•	-6 0,4	887 796,887
		0 -8,-4	796,887
		6 ALL	796
		6 -8,-4,4	887
	R4BU83 } →R4BU87 }	ALL ALL	796
	R4BU83)	A. 1	
	+R4BU97 }	ALL ALL	858,887,888
	R4BU99´	ALL ALL	693
		-4 6	861
		ALL ALL	795→797
		ALL ALL	828,829
		, ALL ALL	856 →8 58
	DARUES	ALL ALL	886 →8 88
	R48U52 } →R48U53 }	ALL ALL	861
	R4BU58) →R4BU61}	ALL ALL	861
	R4BU60 R4BU61	ALL ALL	693
	R4BUA1 →R4BUE3	ALL ALL	795,796,826,828,829, 856 ` 858,885 [→] 888,706,861

TABLE V (Continued)

COMPONENT	IDENTIFIER	<u>β</u>	<u>a</u>	TAP NUMBER
VERTICAL TAIL	R4BV28 } →R4BV67 }	ALL	ALL	501,502,542
	R4BV29	-6	ALL	516
	R4BV41 } →R4BV67 }	ALL	ALL	560
	R4BV58	-6,0	-8	501-507,509-524
		-6	0	
		6	-4,4	
		0	4	
	•	4	0	↓

COMPONENT	DATA SET IDENTIFIER	β	a	TAP NUMBER
	100,000	<u>=</u>	<u>α</u>	THE WORDER
ORBITER FUSELAGE	R4FB12	6	0	167+173,178+182,185,187+192, 199+203,205+207,209+213,217
ORBITER BASE	R4FE06	0	0	305
	R4FE10	6	-8	305,307,320
	R4FE11	4	-8	304,305,309,310,314,315, 319,320,324
		4	-6	304,305,307,310,314,315,319, 320,324
		4	-4	302,307,308,309,310,311,312, 314,315,316,317,319+322,324
	R4FE33,34	ALL	ALL	308
	R4FE59→64	ALL	ALL	308
	R4FE73	-6	4	303,306,310,313,314,315,319, 320,323
		-4	4	305,307,310
	R4FE74	6		305,307,320,324
	N41 E7 4	-6	4	304,305,306,309,310,315,319, 320,323,324
	R4FE75	ALL	-8,-4	308
	W. 1. 27 0	ALL	0, -	308
	R4FE82	-6	4	304,305,309,310,314,315,319, 320,324
•	ALL	ALL	ALL	301
BODY FLAP -				
LOWER SURFACE	R4FF06	0	0	436
20%211 00111 7102	R4FF10	6	-8	411
	R4FF11	4	-8	401,410,411,426,436
		4	-6	401,410,411,420,425,426,435
		4	-4	ALL
	R4FF73	-6	4	404,409,410,411,426,436
	04	-3	4	411
	R4FF74	6	-8	402,411

COMPONENT	DATA SET IDENTIFIER	<u>B</u>	<u>a</u>	TAP NUMBER
BODY FLAP - LOWER SURFACE (contd)	R4FF74	4	-4 -4	436 402
	R4FF82	-6 -4	4 4	410,411,420,425,426,435,436 401,410,411,420,425,426,435, 436
BODY FLAP -				
UPPER SURFACE	R4FG03 R4FG06	ALL ALL O	ALL ALL O	414 414 406,421,440
	R4FG10 R4FG11	6 4 4 4	-8 -8 -6 -4	406,416 415,416,421,431,440 405,406,415,421,430,440 ALL
	R4FG25 →R4FG30 }	ALL	ALL	414
	R4FG53 →R4FG58}	ALL	ALL	414
	R4FG73	-6	4	405+408,414+416,421,424,431, 440
	R4FG74	-4 6 4 6 -6	4 -8 -4 -4	406,416 406,408,416 421 406 405,408,415,416,421,430,431, 432,440
	R4FG82	-4	4	405,406,415,416,430,431,440
	R4FG95 →R4FG97	ALL	ALL	414
MISCELLANEOUS	R4FJ11 R4FJ74	4	-8 -4	215 583

COMPONENT	DATA SET IDENTIFIER	<u> </u>	<u> </u>	TAP NUMBER
WING - LOWER SURFACE	ALL R4FL08 R4FL12 R4FL65 R4FL66 →R4FL74 R4FL66 R4FL67 →R4FL74 R4FL73	ALL ALL ALL ALL -6 -4 ALL ALL -6 -4	ALL 0 -8,-4 ALL -8 6 ALL 4 4 -8 -8 -4,0 4	809 650 ALL 4 814 814 872,900,902 810,812 812 808,809 810 809 810 810 808
SRB PROTUBERANCES	ÁLL	ALL	ALL	2306-2312,2314,2335-2343
SRB SURFACE	R4FS06 R4FS11 R4FS73 R4FS82	0 4 4 4 6 -6 -4	0 -8 -6 -4 0 4	2160 2210 2209,2210 2210 ALL 2209,2210 2170,2171,2175,2204
EXTERNAL TANK SURFACE	R4FT06 R4FT11 R4FT12	0 4 6	0 -8 0	1559 1425,1529 1306+1309,1311,1312, 1323+1329,1340+1346, 1357+1362,1375+1380, 1391+1393,1395+1397,
	R4FT64 R4FT66 R4FT73	ALL 4 ALL -6	4 0 6 4	1408+1414,1421,1425 1351 1517, 1375,1351 1424,1425,1543,1544,1545

TABLE V (Concluded)

COMPONENT	DATA SET IDENTIFIER	β	<u>a</u>	TAP NUMBER
EXTERNAL TANK SURFACE (Contd)	R4FT73	-4	4	1425,1545
	R4FT74	4	-4	1425,1545
	R4FT75	-8	-8	1546
	R4FT82	-4	4	ALL
UPPER WING BASE	R4FU08 R4FU12	ALL 6	-8 0	796 636,637,672,794,796+801, 819+824,358+862,879+884, 886,906
	R4FU66	-6 + 0	-8	796
	R4FU82	-4	4	770,802

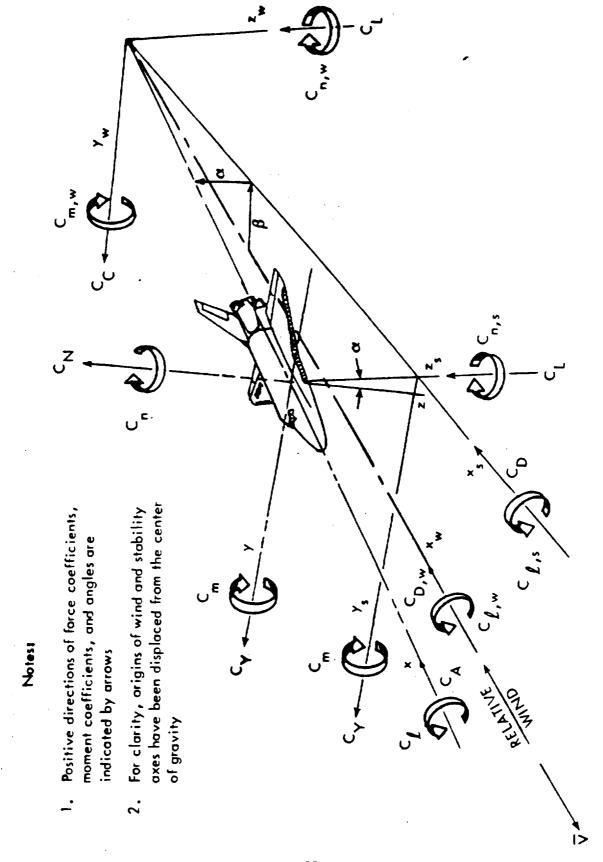
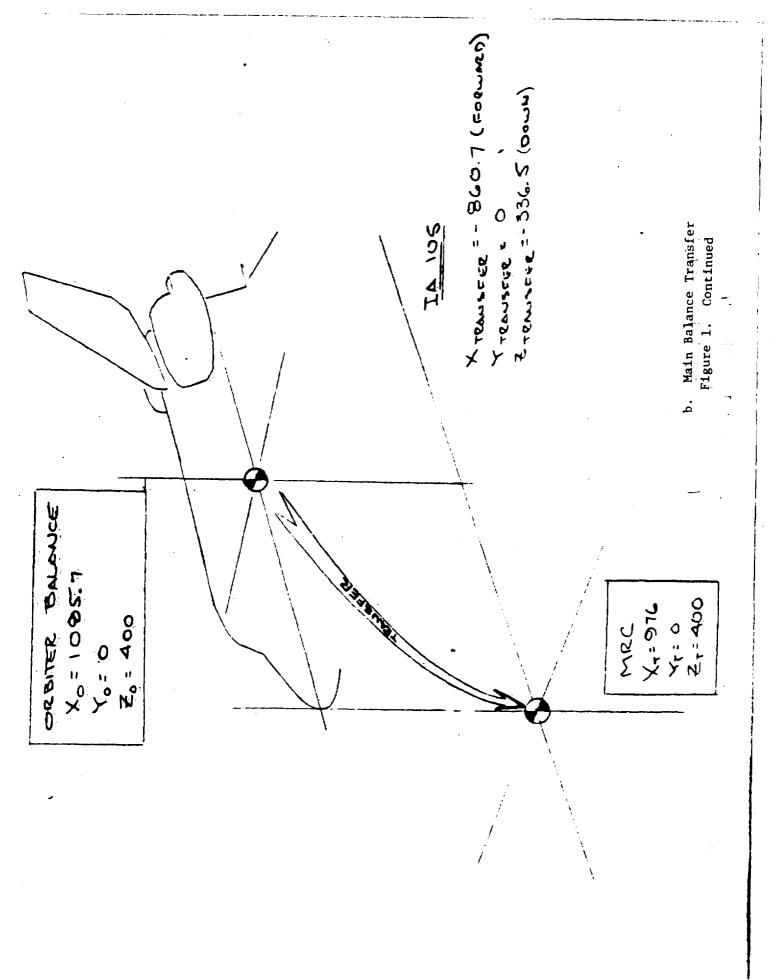
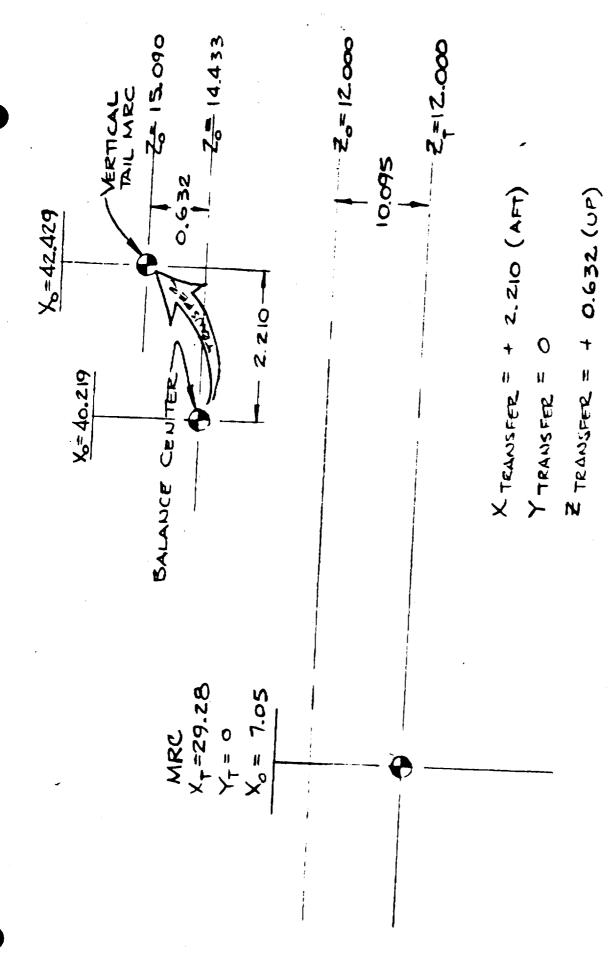
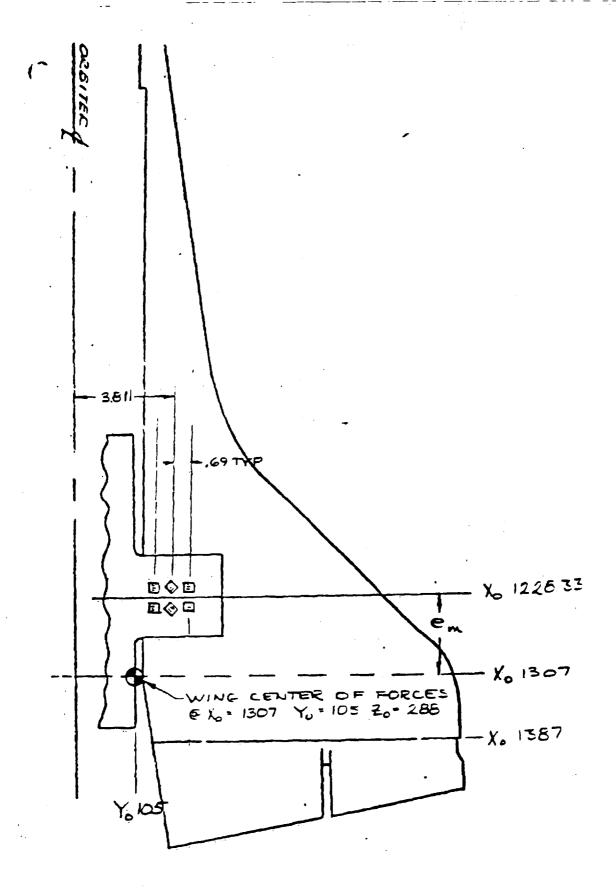
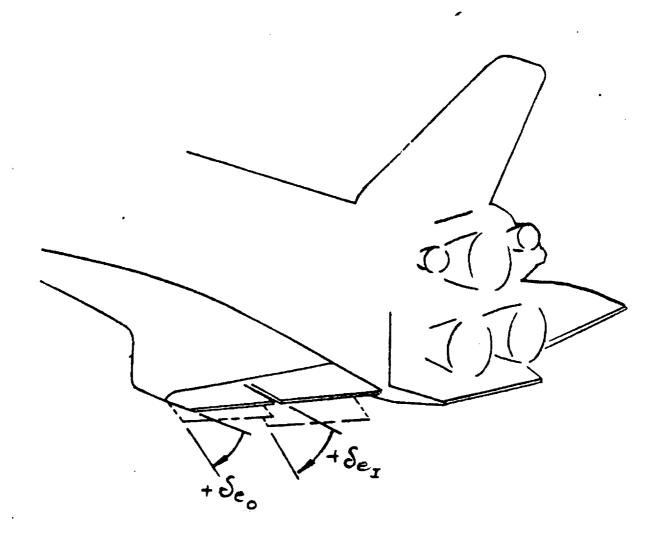
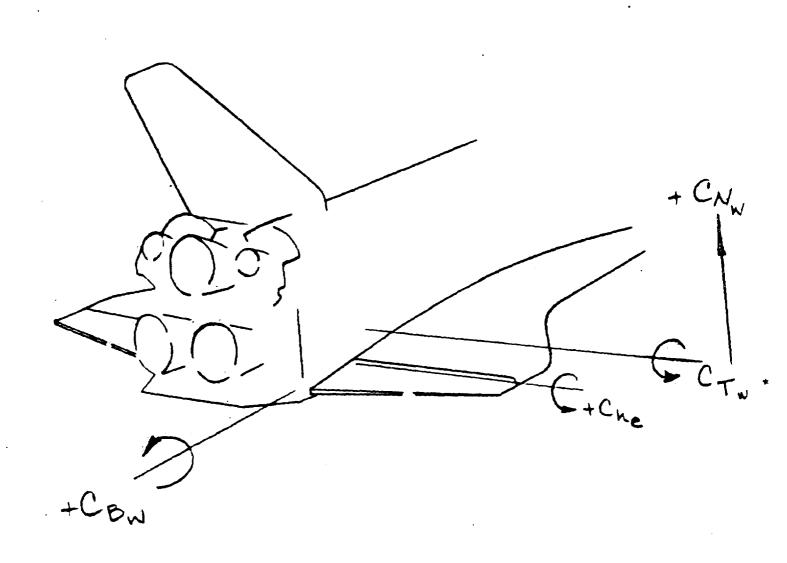
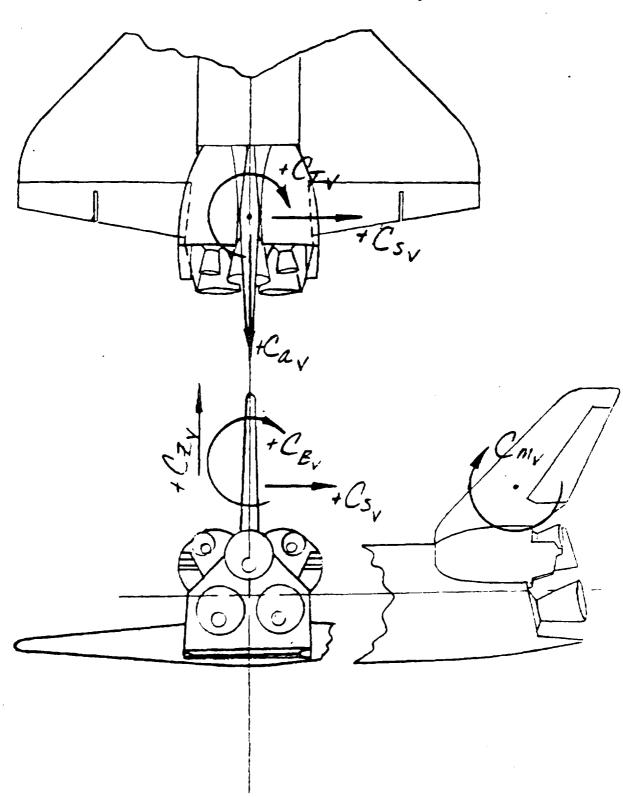
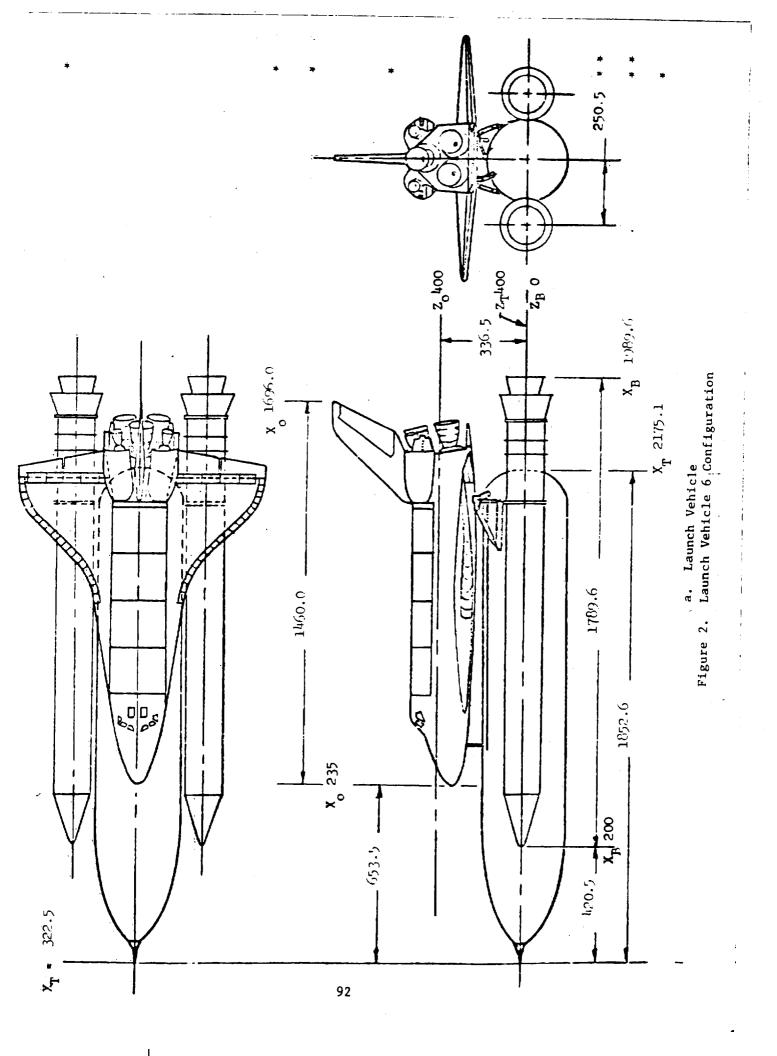





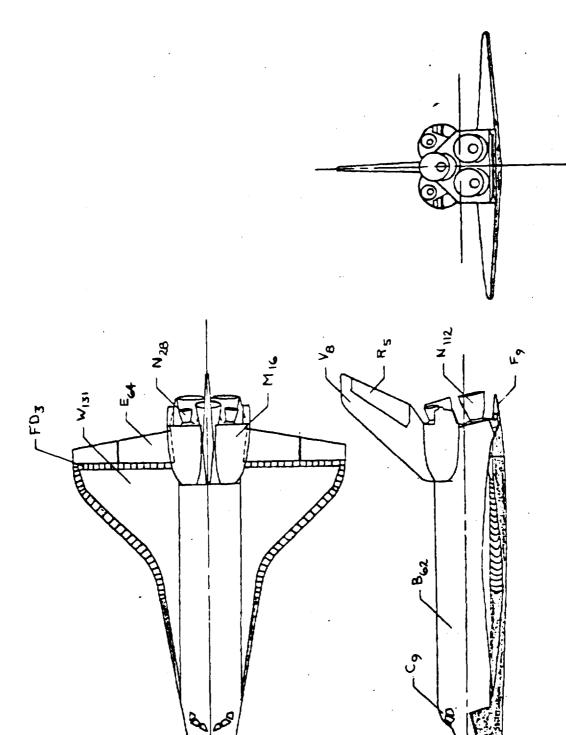
Figure 1. Model Axis Systems, Sign Conventions and Reference Dimensions a. Axis Systems



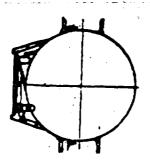

vertigal Tail Balance Transfer
 Figure 1. (Continued)

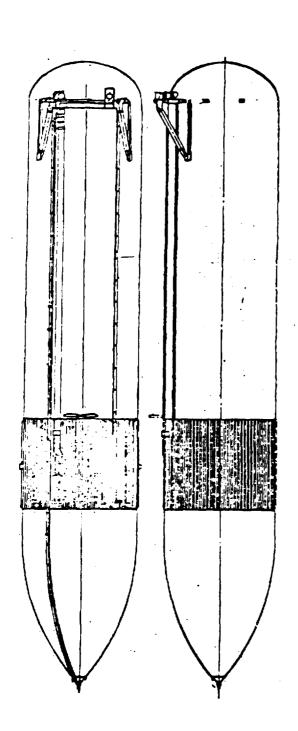

d. Wing Balance Transfer Figure 1. (Continued)

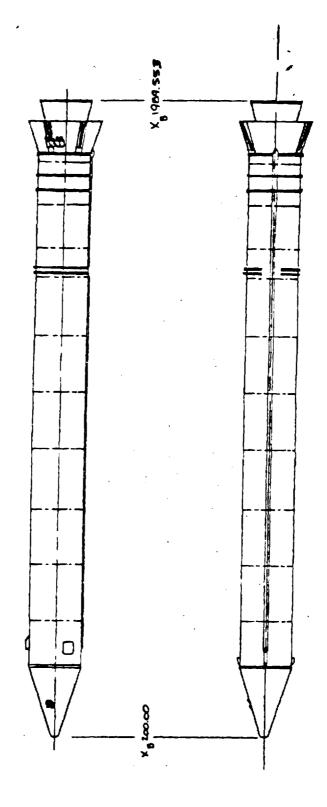

e. Elevon Deflection Sign Convention Figure 1. (Continued)



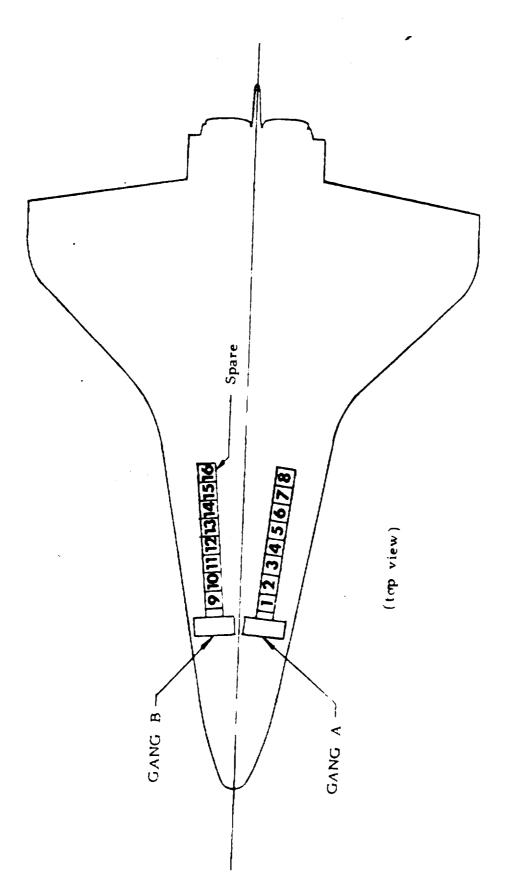
f. Wing Load Sign Convention Figure 1. (Continued)

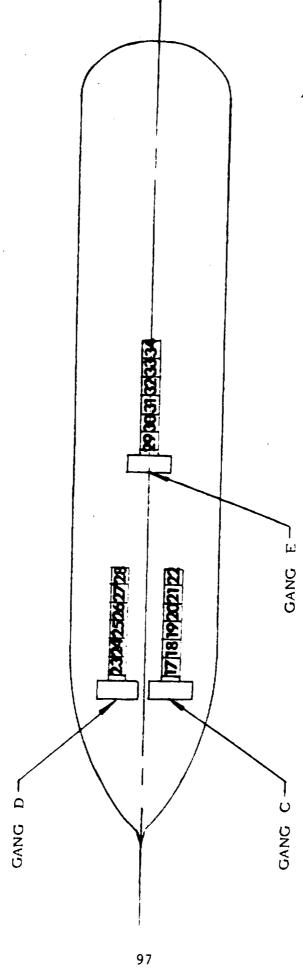


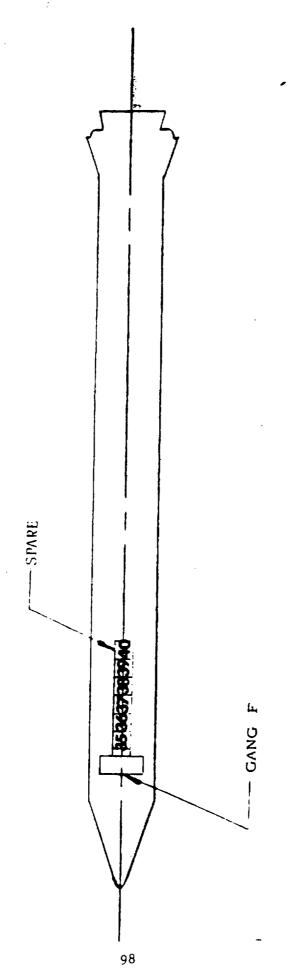

g. Vertical Tail Load Sign Convention Figure 1. (Concluded)

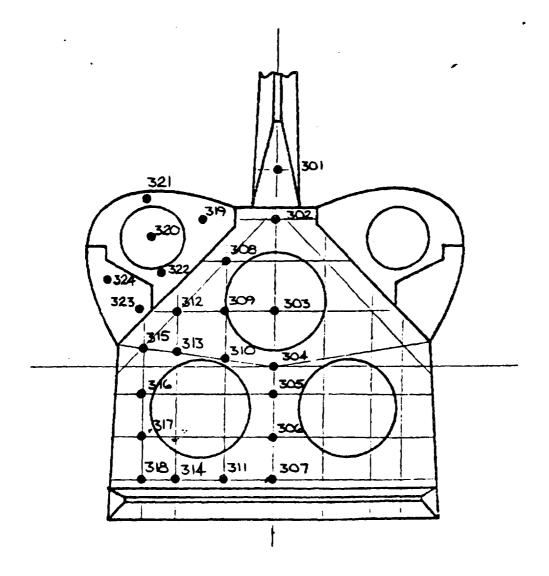


b. Orbiter 102 Figure 2. (Continued)



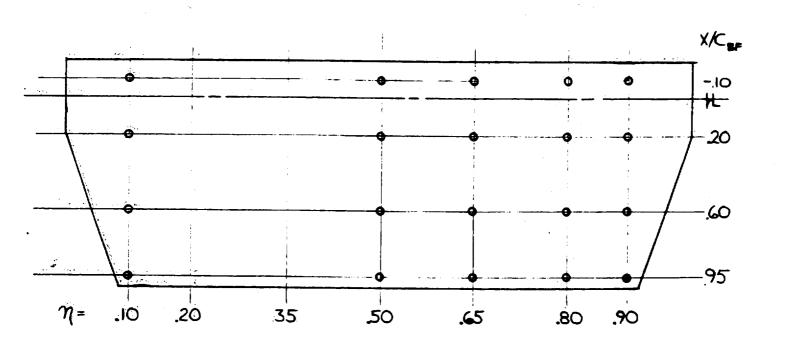

c. External Tank - T39 Figure 2. (Continued)


d. Solid Rocket Booster - S₂₇ Figure 2. (Concluded)

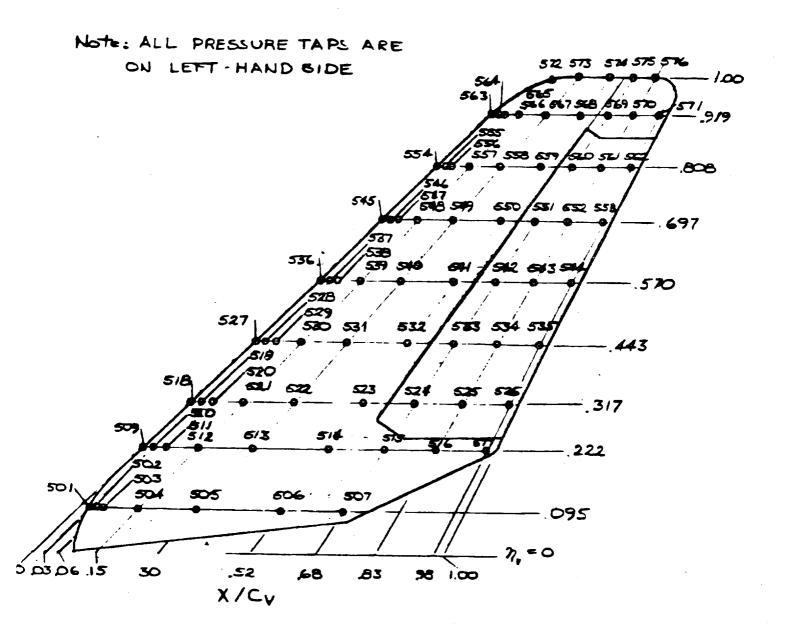

a. Orbiter Figure 3. Scanivalve Locations

b. External Tank Figure 3. (Continued)

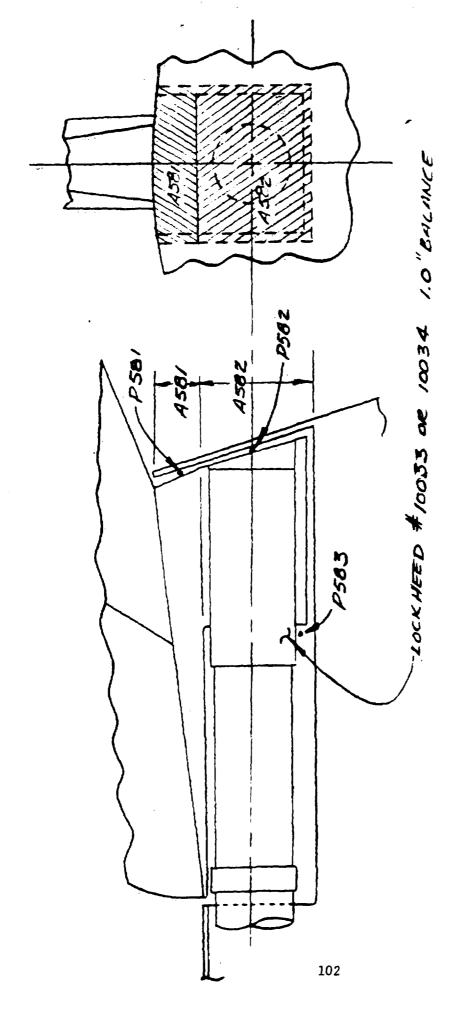
c. Solid Rocket Booster Figure 3. (Concluded)


TAP	Zo	. Yo
301	532	0
302	505	0
303	443	0
304	400	0
305	376	0
306	340	0
307	302	0
308	478	-38

TAP	Z.	Yo
309	439	-38
310	405	-38
311	302	-38
312	439	-78
313	410	-78
314	302	-78
315	414	-103
316	376	-103


TAP	己。	Yo
317	340	-103
318	302	-103
319	514	-55
320	492	-88
321	522	-103
322	470	-96
323	439	-107
324	465	-130

a. Orbiter Base
Figure 4. Orbiter Pressure Tap Locations


Ž	X/C	SF (P	опом)	X/CBF (TOP)								
/(10	.20	.60	.95	10	.20	.60	.95					
.10	401	402	403	404	405	40%	407	408					
.50	409	410	411	412	413	414	415	416					
.65	417	418	419	420	421	422	423	424					
.80	425	426	427	428	429	430	431	432					
.90	433	434	435	436	437	438	439	440					

b. Body Flap Figure 4. (Continued)

c. Vertical Tail
Figure 4. (Continued)

d. Vertical Tail Balance Gavity Figure 4. (Concluded)

E S	,	3		T ₂	9	89	8	22				89		8							T		T	T	1		T		T	T	T			T	T
DEGREE	3	3		Ĭ	2 6	77	39	Si.				67	1	83	93	102	111	2	R		1	2	0,	147	1		3		3	Z	26		Ø	213	1
N N	88	3		73	1	9	28	S	\top	T		3		8							1	1							1	T	\top	T	1	\dagger	\uparrow
0	<u> </u>		-	1 2	ין נ	ु	5	\$				65		00	92	ō	10	611	128		9	8	97	?		1	2	ŀ	3	Ø	1		1	1	1
	17.	1				1		1	1	1	20	1	1	1	1						1	T	T	T	1	1	1		†	\dagger	+	1	†	1	\dagger
NO	69			T		1	1	1	1	1	1	8	1	1	1					-	1	1	1	1	1	1	+	1	†	1	†	\dagger	1	\dagger	+
ATI	53	-			T	†	†	+	\dagger	+	\dagger	1	18	8	5	8	8	118	127	-	12	1	127	•	\dagger	18	9	1	2	1	2	1	y :	212	+
LOCATION	162	-			†	1	1	1		1	†	1	र्ग	1	1	1						T	T		\dagger	-	1	1	\dagger	1	1	+		+	+-
1.	N	-		1	1	T	†	1	1	\dagger	†;	3	1	+	1	1	1					+	T		T	\dagger			\dagger	\dagger	+	+	+	+	\dagger
RADIAL	151					T	1	1		1	1	10	2		1	1											+-	†	1	1	+		1	\dagger	
R.	8			12	24	1	3 9	3	1	T	1	1	g		Q I	R	8	17	126		3.6		146		1	157		10/2	8	3 8	1	Į	1 = 0		
AP	3		T			1	\dagger	Ť	\dagger	1	†	\dagger	P	9	\dagger	1	1	1							T	T	+	-	-	}	†		-	+	H
-	335			-	-	T	T	1	\dagger	\dagger	1	T	\dagger	1	1	†	1								-	_		3	2	8	<u></u>	8	5	<u>;</u>	
URE	120			=	23	Y.	7	;			3	;	1	1 8	20 20	श	6	9	125		135		185			S		167		┺		8	+		217
SSU	0									1	T	T	T	T	T	\dagger	1	1	1		-							-		1	†			214	-
PRE	8								1					T	-	1	1	1								-		<u>و</u>	177	2	+	198	8		
	8		3	<u>o</u>	22	34	46	53	24	;	13		17/	9	9 6		9	2	22		134		4			55		Š	176	ğ		161	↓	╀—-	П
AGE	B														\dagger	†	†	1	7	3		\$		-	18		9						 		
الد ا	2			6	21	53	45				09		75	10	òò	واع	2	4	123	1	133		153			154		<u>₹</u>	75	88	193	8	8		
FUSE	67.5															1	1	1	1	1				8				7			-				
1 1	SS			œ	8	32	\$				65		74			T	†	1	1	1															7
ITER	9			7	6	70	53				28		23	-	8 0	? 3	1	1	77	1	22		142			53		163	174	20		195	205		7
ORBI	Q			و	8	ß	24				57		72			T	T	1	1	1	1		1												7
	0	-	7	S	-	29	41				56		11	BS	10	2	3 5	1	17	+	20		4			152		29	113	183		194	204		7
	76	1	18	53	S	37	4	15	12	39	96	33	54	-	┼~	+-	┿	┿	+	+	-+	32	-+	=	88	7	6		-					R	36
;	×	٥	.007B	.0233	0465	7690	1124	.1163	1271	.1589	.1666	.1783	.2054	.2364	.2558	2751	2002	3 2	9266	3	4223	.5192	.53	.5441	.5882	15	.6929	7595	8254	.8835	.8951	1926	.9649	1.0036	.0036

				8	620		3 ($\frac{2}{2}$																			- Cores
	SNOIL			1160	839		672	E §	8	8		ر ا ا	738	82	222)	8	80									
				1750		654		- 1	2.75	3 6	1000	7.47	7 0	0951	769	785	ভেনত	1 0 0 0		835		3	863				
				1160	636	300	670	687	27.6	727		726	757	20,0	76B	8	968 0		87.0	9 6		962	877	8	892		
				1880 €	Si	200	699	900	5 C	719	ORTA	735	751	0.882	767	/85	U	r d		031	0 0	989	876	0932	- kg	3	
				280	654 67		668		12	718	080	77.4	750	70. 60. 0	766	70/	260	A 14	0.629	0 (v		946		_	0 %		
				0876	36	6530	667			717	38% C	733	249	9/10	7.01		0 788 L		7_	829	C 247	853	874		9883 X	1.00	216
		080		9 C	250		36	3 5 g	7007	716	0738	732	748	5220	764	8	200	21.80	0.739	277	200	00.53	873	7890	900	1560	116
	TAP NUMBERS/LOCATIONS	07 O	3		- 63- - 648		1383	701	18	715	769	13.	747	673	765	12	3,4		IC.	220	200	887		ν.	è è	0.779	910
	NUMBER	603			32	900	664 CB	0	698	714	550	730	746	0.53	762	9	100	0	165.	978	535	856	871	0.538	8	0.50	(2)
		0 0	618	p d		UP O	36	0	269	713	Q	729	745	9 0	121	-	797	-		38	0.40	985	970	4.6 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	8 8	.423	908
	WING PRESSURE	025	1-00	62B	3	0.25	567 677	17.0	969	712	0.25	ρ; (γ		0.25	777	910	S F	828	0.25	600	0:55	801A	3	025	98	025	<u>C</u>
		<u> </u>	0 0	123	44	510	8/9	510	569	7.	10.5	121	743	ام ام	77.5		7 6	807	0	000	0.15	853		0 4	26	015	يرو
13	VII.	600 600 600			23	900	527	800	634	<u>,</u>	0 0 0 1 0	2 02	4		774	000	8	306	က် ရှိ	220	003	952	190	200	836		
	TABUE VII	000 S	10 C	573	42	500	2 2	000	693	8	000	7	4	37	77.5	500	780	88	000	8	200) de de	-) စ		
		<u> </u>	00.0	624		002	575	?00	000	8	ところ	7 (777	776	000	788	8	0.00		300				804	·	
		602	0,	623		000		100	6.7	è (500		6	1000	111	000	787	8	0 c	834	ō	8,8	8 6	(P) (C)	8,1		
		000	80	600		0	656	800	8	18		122	8		104	80		_		_	& 0	888	0		900		
		7/2 dot	××			ي ا	2 6				3 (> 1	_	2 >	300	POL	X/C		B.	3 6	_				_	_	X(V)X	
مر				140	1		9	•	5 80	1	75	2		33	?		340	1	ξ. (2)			420		7			7
2	2 ⁷ /8	235		2,00		217	<u>}</u>		1427		125) } -		517			726		8		1	1841		96		. (3

a. Lower Surface Figure 5. Wing Pressure Tap Locations

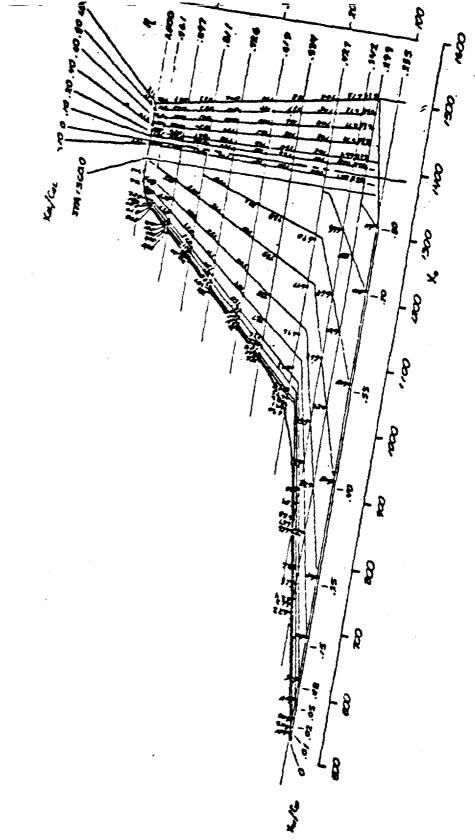
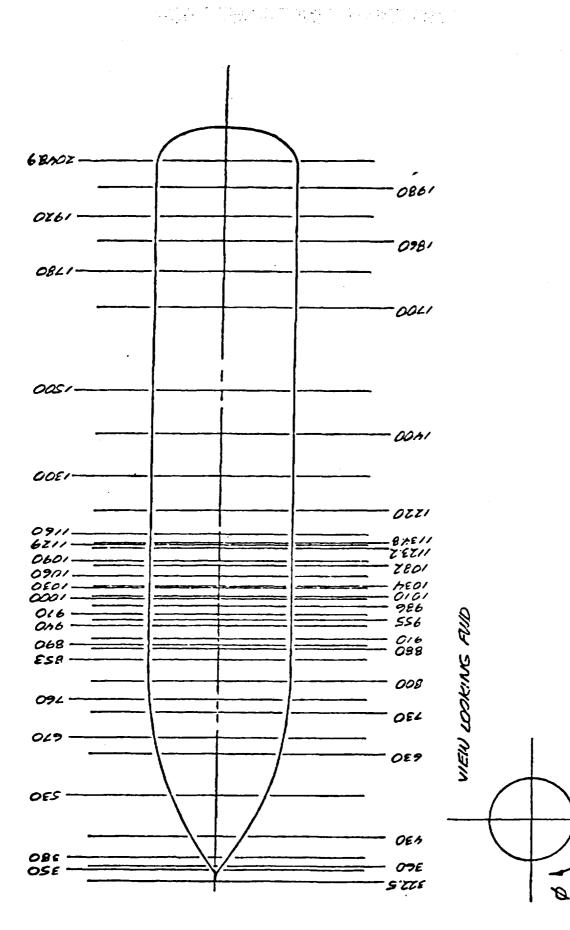



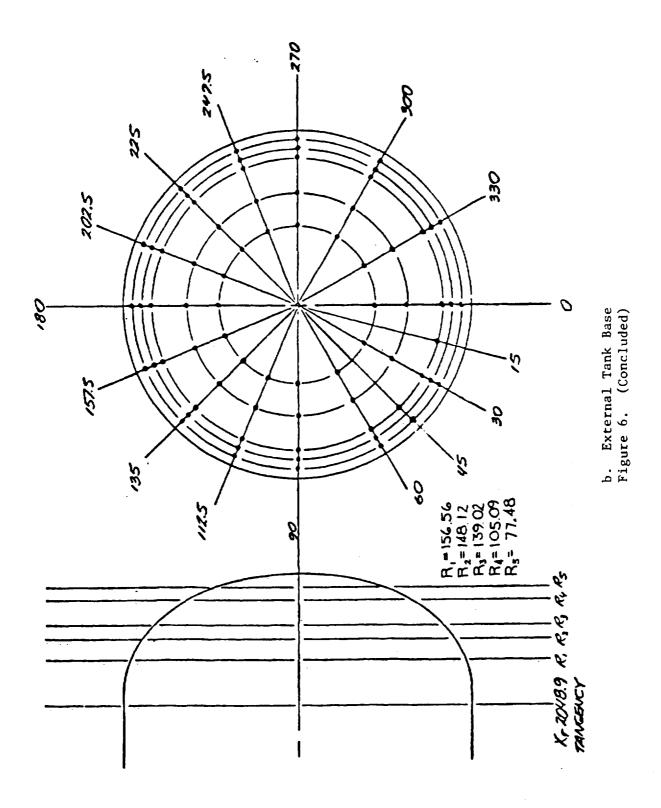
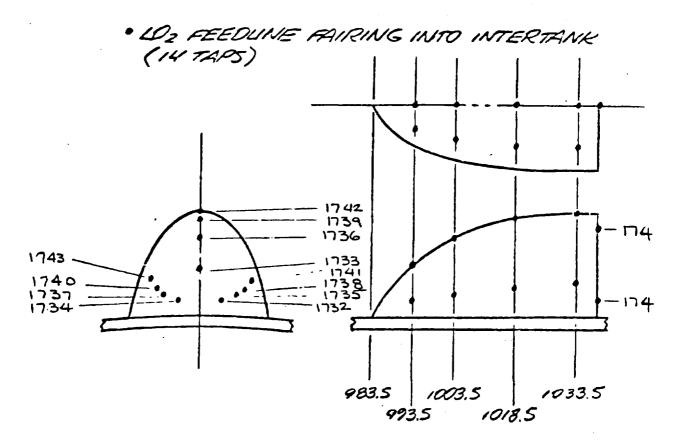
TABLE VIII. EXTERNAL TANK SURFACE PRESSURE TAP LOCATIONS

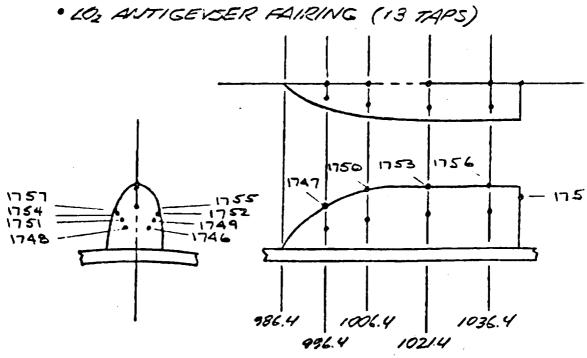
	E	T. F	PRE	SSL	JRE	TA	PL	OCA	TIC	N ~	φ.	DEG	,
X_{τ}	0	2.5	30	60	85	87	90	93	95	112	5 134	5 1575	5 165
322.5	1001									1			
350	1002			1003			1004	4			100	5	
360	1010			1011			1012				101	3	
380	1018		1019	1020			1021			102	2 102	3 1024	
430	1032		1033	1034			1035					7 103	
530	1046		1047	1048			1049			·		1 1052	
630	1060		1061	1062			1043			106	106	5 1066	
670	1074		1075	1076			1077			1078	107	1080	7
730	1088		1089	1090			1091			7	T	5 1094	7
760	1102		1103	1104			1105			1106	1107	1108	
8∞	1116		רווו	1118			1119			1120	1121	1122	
847	1130		1131	1132			1133			1134	1135	1135	
088	1144			1145			1146		l	1147	1148	1149	
890		1155	<u> </u>	<u> </u>			·			<u> </u>			
910	1157			1158			1159			1160	1161	1162	
940	1168		1169	071			1171			1172	1173	1174	
955					1182	1183	1184	1185	1186				
970	1192			1193	1194				1195	1196	1197	1198	
986					1207				1208				
1000	1214			1215	1216				1217	1218	1219	1220	
1010													
1030	1228		1229	1230			1231			1232	1233	1234	
1034													
1060	1244			1245			1246			1247	1248	1249	
1082													
1090	1258			1257			1260			1261	1262	1263	
1123.2	1269		1270	1271			1272			1273	1274		1275
1129												1281	
1134.8													1284
	1285			1286			1287			1288	1289	1290	
	1296			1298			1299			1300	1301	1302	
	1309		1310	1311			1312			1313	1314	13/5	
1400	1322		1323	1324			1325			1324	1327	1328	
5∞	1335		1336	1337			1338	1		1339	1340	1341	
1700	1348		1349	1350			1351					1354	
1780	1361		1362				1344				1366		
1860	1374		1375				377			378		1380	
1920	1387		1388	1389			1390			_		1393	
1980	1400			1402			1403					1406	_
2045	1413	l	1414	1415			1416			417	418	1419	

TABLE VIII. EXTERNAL TANK SURFACE PRESSURE TAP LOCATIONS (Concluded)

	E.	T F	RE	SSL	IRE	TA	PL	O CA	TIO	N ~	ф^	DEG	
X_{T}	172.5	180	1825	195	2025	210	214	220	225	2475	270	300	330
322.5	ļ	1001								1		<u> </u>	
350.		1006							1007		1000	1009	Ľ_
360		1014							1015		1016	1017	
380		1025			1026				1027	1028	1029	1030	1031
430		1039			1040				1041	1042	1043	1044	1045
530		1053			1054				1022	105	1057	1058	1059
630		1067			1068				1069	1070	1071	1072	1073
670		1081			1082				1083	1084	1085	1086	1087
730		1095		-	1096				1097	1098	1099	1100	101
760		1109			1110				1111	1112	1113	1114	1115
8∞		1123			1124				1125	1126	1127	1128	1129
847 .		1137			1138				1139	1140	1141	1142	143
880		1150			1151				1152	1153	1154		
890			1156										
910		1163			1164				1165	1166	1167		
940		1]75			1176				1177	1178	1179	1180	1181
955				1187	1188	1189	1190	1191					
970		1199						1204	1205	1206			
986					1210		7	1213					
1000		1221							1222	1223		1224	
1010		-		1225		1226		1227					
1030		123							1236	1237	1238	1239	1240
1034				1241		1242		1243					
1060		1250							1251	1252	1253	1254	
1082		1255		1256		1257							
1090		1264							1265	1266	1267	1268	
1123.2		·										1279	
1129	1282	1283											
1134.8													
1160		1291						•	1292	1293	1294	1295	
1220		1303							1304	1305	1306	1307	1308
1300		1316							1317	1318	1319	1320	1321
1400		1329							1330	1331	1332	1333	1334
15∞		1342							1343	1344	1345	1346	1347
1700		1355										1359	
1780		1368							1369		-		1373
1860		1381							1382			1385	
1920		1394							1395			1398	
1980		1407								1409			1412
2045	-	1420							1421		1423	1424	

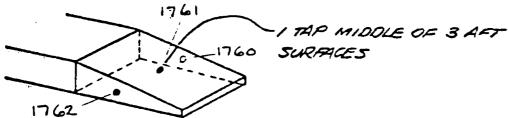
a. ET Station Numbers Figure 6. External Tank Pressure Tap Locations

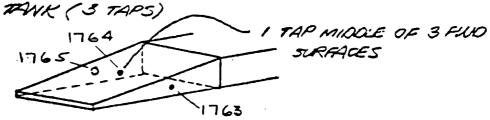




TABLE IX. EXTERNAL TANK BASE PRESSURE TAP LOCATIONS

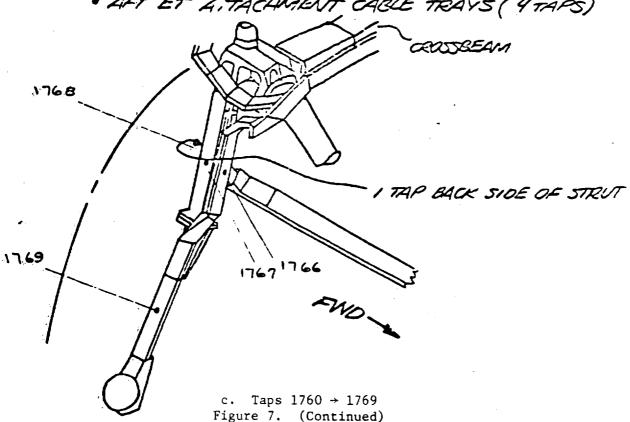
PADIUS		TE	ET BASE		SSU	RE T	PRESSURE TAP LOCATIONS ~ \$ ~ DEGREES	OCA	TION	~ S	~ ф	DEG	REES			
FUL SC.	0	15	30	45	09	96	60 90 1125 135 1575 180 2025 225 2475 270 300 330	135	157.5	180	2025	225	247.5	270	300	330
156.56 1502	1502		1503	1501	1504	1505	1503 1501 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515	1507	1508	1509	1510	1511	1512	1513	1514	1515
148.12 1516	1516		151		1518	1519	1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529	1521	1522	1523	1524	1525	1526	1527	1528	1529
139.02 1530 1531 1532 1533 1534 1535 1537 1538 1539 1540 1541 1542 1543 1544 1545	1530	1531	1532	1533	1534	1535	1536	1537	1538	(53)	540	154	1542	1543	1544	1545
105.09 1546	1546		1547		1548	1549	1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559	1551	1552	1553	1554	1555	1556	1557	558	1559
77.48 1560	1560		12%1		1562	1563	1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573	1565	1566	1567	1568	1569	1570	1571	1572	1573
0	1574															

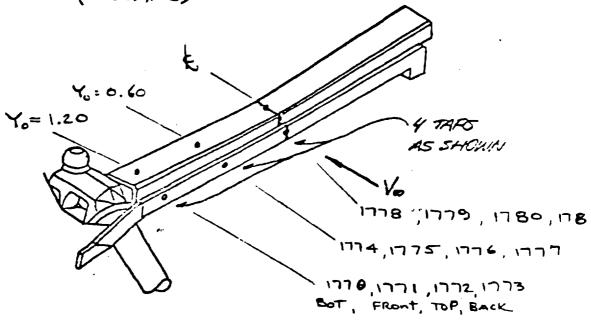
· LOZ TANK CABLE TRAY (44 TAPS) TAPS # 1601 - 1644 4 TAPS AS SHOWN FOR THE POLLOWING STATIONS: 458 · CHZ TANK CABLE TRAY (52 TAPS) TAPS # 1645 - 1696 4 TAPS AS SHOWN POR THE FOLLOWING STATIONS: 1238 1496 1367 1625 1431 1690 GO, PRESSURE UNE (28 TAPS) TAPS # 1697 - 1724 I TAP AS SHOWN FOR THE FOLLOWING STATIONS: 461 フフフ 980 1496 · CO, PRESSURE LINE & CABLE TRAY PAIRING ON THE NOSE CAP (7 TAPS) 1729 1728 I TAP MIDDLE OF SIX SIDES

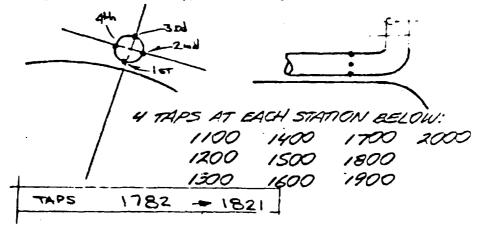

a. Taps 1601 → 1724
Figure 7. External Tank Protuberance Pressure Tap Locations

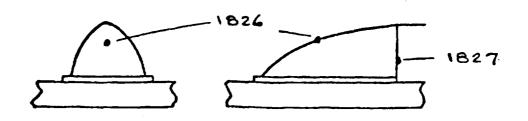


b. Taps 1732 → 1759Figure 7. (Continued)


· OGIVE CABLE TRAY INTERTANK PENETRATION FAIRING (3 TAPS)


· INTERTANK CABLE TRAY FAIRING FOR LHZ


· AFT ET A, TACHMENT CABLE TRAYS (4 TAPS)

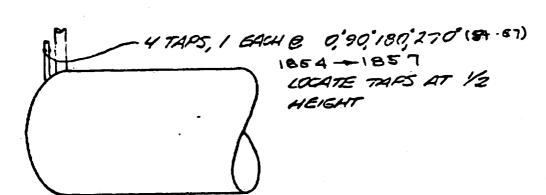

· AFT ATTACH STRUCTURE CROSSBEAM (12 TAPS)

· LO2 FEEDLINE (40 TAPS)

· CH2 PRESTURE LINE FAIRING (2 MPS)

d. Taps $1770 \rightarrow 1827$ Figure 7. (Continued)

· CH: PRESSURE LINE (12'TAPS)


1 7AP AS SHOWN FOR THE POLLOWING STATIONS: 1100 1400 1700 2000 1200 1500 1800 1300 1600 1900 2 TAPS AS SHOWN (WINDWARD | LEEUIARD LOCATED V2 HEIGHT

· LOZ ANTICEYSER UNE (10 TAPS)

1840 - 1849 1 TAP AS SHOWN FOR THE FOLLOWING 574710NS: 1100 1430 1700 2000 1200 1500 1800 1300 1600 1900

· 4/2

RECIRCULATION LINE (4 TAPS)

e. Taps 1828 → 1857 Figure 7. (Continued)

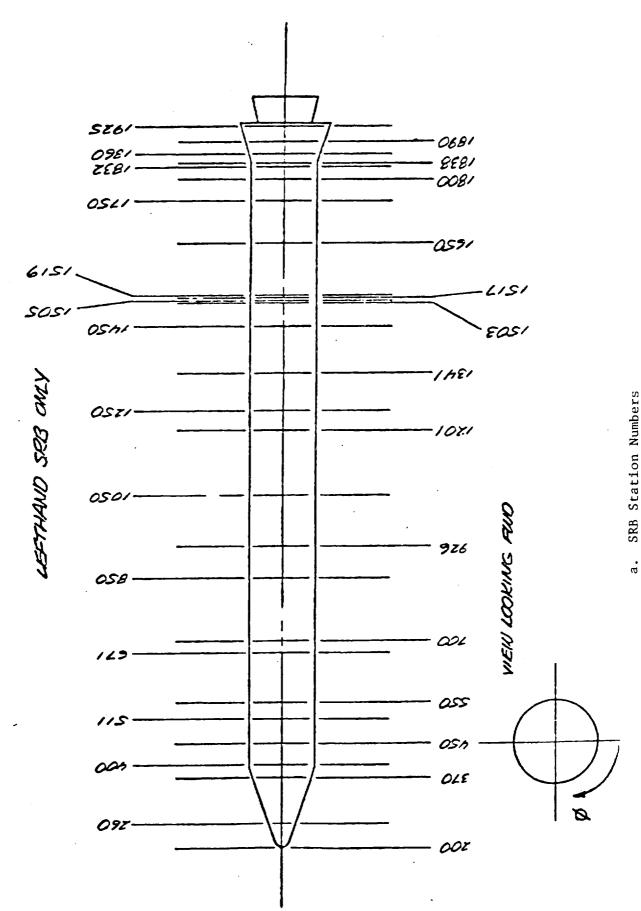
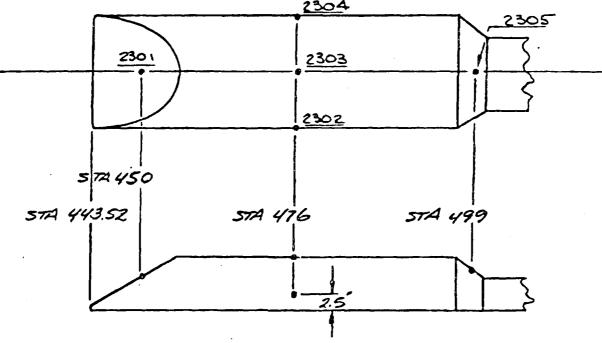
DESCRIPTION	+ TAPS	FROM	נט
LOZ TANK CABLE TRAY	24	1601	1644
LHZ TAUR CABLE TRAY	52	1602	1696
GUZ PRESSURE LINE	28	१६५७	1724
GOZ PRESSURE LINE & CABLE TRAY	-1	(725	1731
LOZ ECTOLINE FAIR INH	14	1732	1745
LUZ AUTHYSUR FAIRING	Ć	1746	1759
OGIVE CABLE TRAT FAIRING	3	1760	1762
WITERTANG CABLE TRAY FAIRING	3	1763	1765
AFT ET ATTACH CASLE TRAY	4	1766	१७६५
AFT ET ATTACH CROSSBEAM	12	טררו	1781
LOZ FEEDLINE	40	1782	1821
GHZ PRESSURE LINE FAIRING	2	१८८६	しをとり
GHZ PRUSSURE LINE	12	१६८६	539
LOZ ANTINYSEE LINE	0	1840	1849
LHE TERO E RECIRCULATION LINE	4	1854	1887

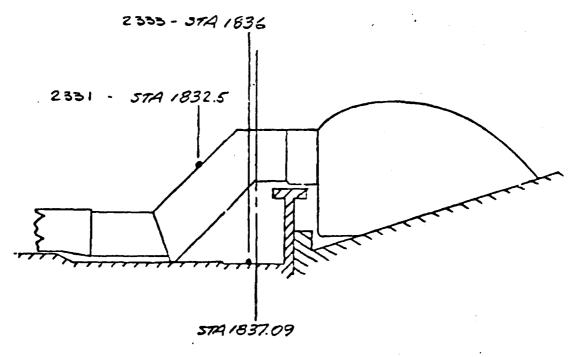
∑:24€

f. External Tank Protuberance Pressures Summary Figure 7. (Concluded)

TABLE X. SOLID ROCKET BOOSTER SURFACE PRESSURE TAP LOCATIONS

STA	0	45	86	90	94	135	180	225	247.	5 270	292	5 3/5
200	2001	_				_	2001		-	-	-	T
260	$z\infty z$	2003	_	2004	_	2005	2006	Z007	_	2008	1-	2009
370	2010	2011		ZOIZ		2013	2014	2015	_	ZOLE	_	2017
400	2010	2019		2020		2021	202 Z	2023		2024		2025
450	2026	2027			_	zae	2029	2030		. ,		2032
5//			2033		2034	_	_			_	_	
550	2035	2036		-14		2037	2038	2039	_	2040	_	2041
67/			2042		2043			_			_	
700	2014	2045			_	2046	2047	2048		2049		2050
850	2051	Z05Z		_	_`	2053	2054	2055		2056	_	2057
926			2058		2059		_			_		
1050	2060	2061	2062		2063	2064	2065	2066		2067	_	2068
1201	_		2069	-	2070	_	-			_		
1250	2071	2072	_			2073	2074	2075	_	2076	_	2017
1341			2078		2019		—		1	-	-	_
1450	2080	2001	_			2082	2083	2084		2085		2086
1503	2087	2088	2089	—	2090	2091	2092	2093		2094		2095
1505	2096	2097			-	2098	2099			2/01	_	••
1517	2103	204				2105	2106			2/08	-	
1519	_		_		2110		1			_	_	
1650	2111	2112	2/13	-	2/14	2/15	2116	2117		2/18	_	2119
1750	2120	2121				2122	2/23	2/24		2/25	_	2/26
1800	2/27	2128	2129		2130	2/3/	2/32	2/33		2/34		2/35
1832	2/36	2137	<u> </u>]	_	2138	2139	2140		ZAI		2142
1838	2/43	2/44					2146			2148		2/49
1860	2150	2151		2/52				2155				
	2160			2/62				2/65				
1925	2/8	2/7/]	2/72		2/73	2/74	2/75	2176	2/77	2/3	2/79

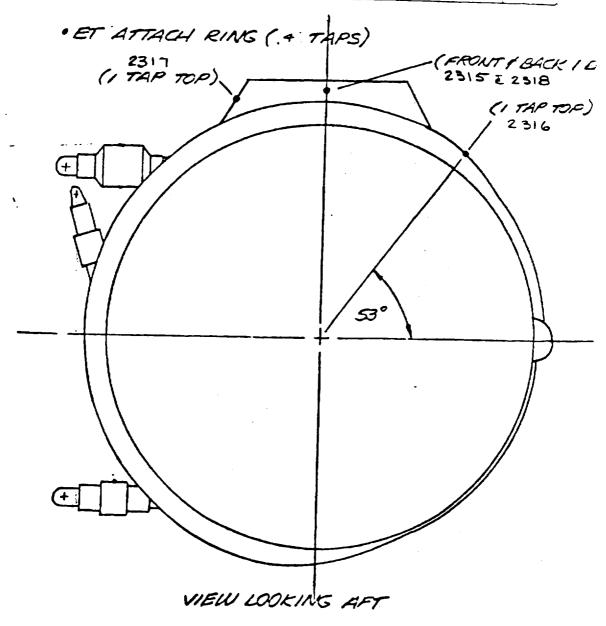




Figure 8. Solid Rocket Booster Pressure Tap Locations

b. SRB Base Figure 8. (Concluded)

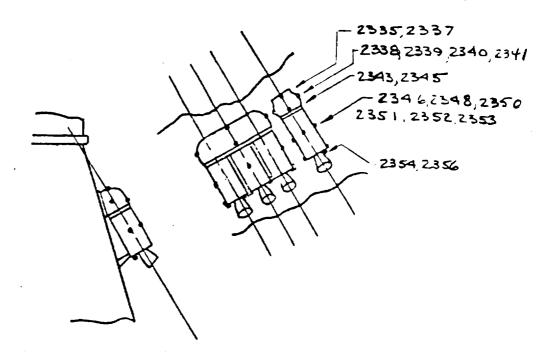
· FWD FAIRING-SYSTEMS TUNNEL (5 TAPS)

· AFT FAIRING-SYSTEMS TUNNEL (2 TAPS)

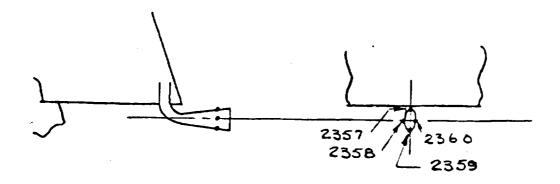


a. Systems Tunnel Ends Figure 9. SRB Protuberance Pressure Tap Locations

· CENTER SECTION-SYSTEMS TUNNEL (13 TAPS)


• I TAP LOCATED TOP CENTERLINE OF FAIRING AT THE FOLLOWING SRB STATIOILS:

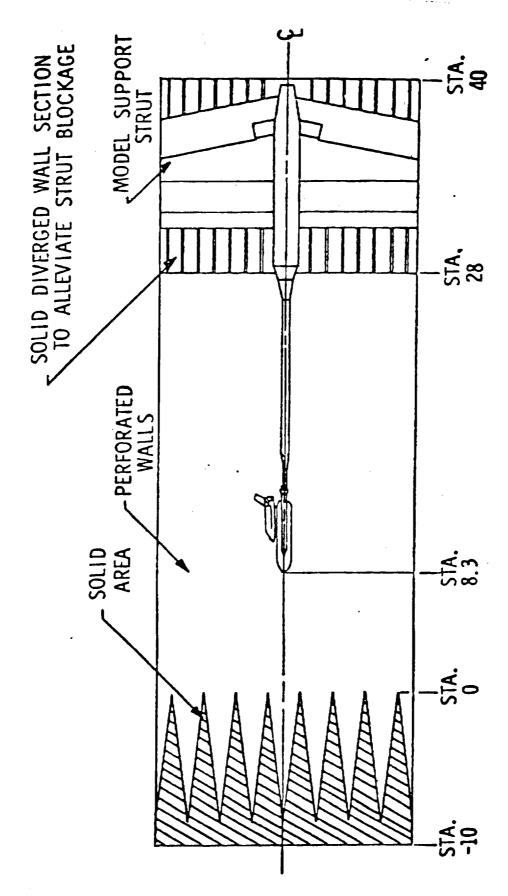
2306 511 2300	Χs	TAPHO YE	TAPLIA	V-	-	
2306 511 2309 2307 561 2310 2308 671 2311	011	2314 1201	2327	1591	2330	1800



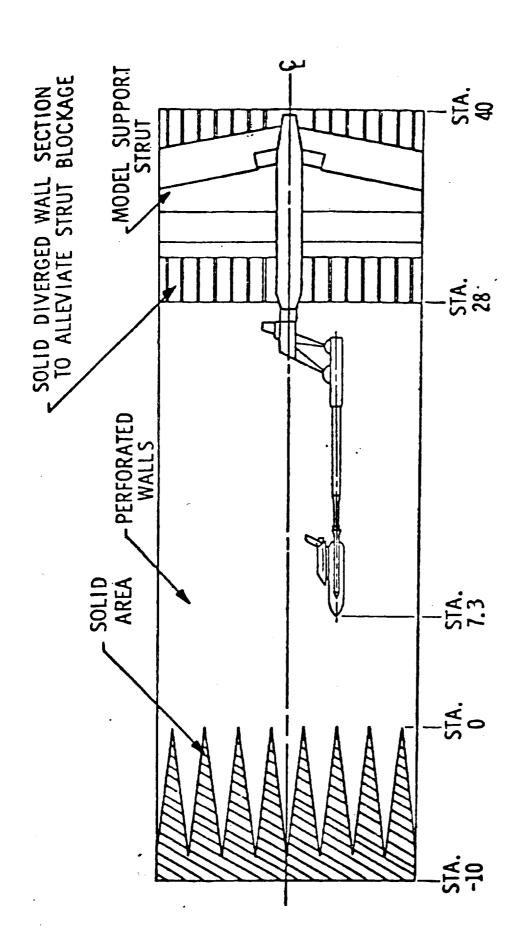
b. Systems Tunnel and Attach Ring Figure 9. (Continued)

· SEPARATION MOTOR FAIRINGS (16 TAPS)

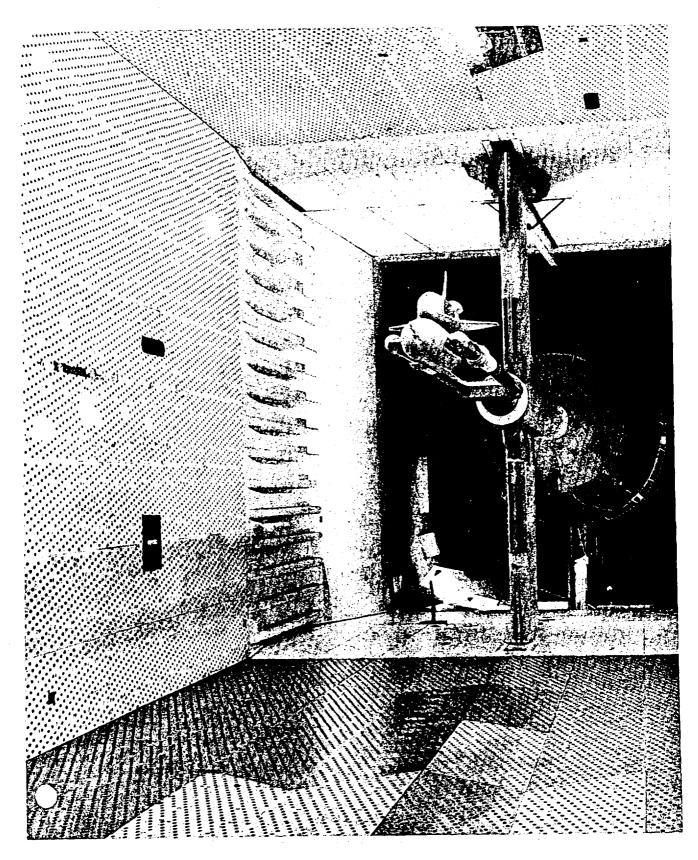
* TURBINE EXHAUST (4 TAPS). -



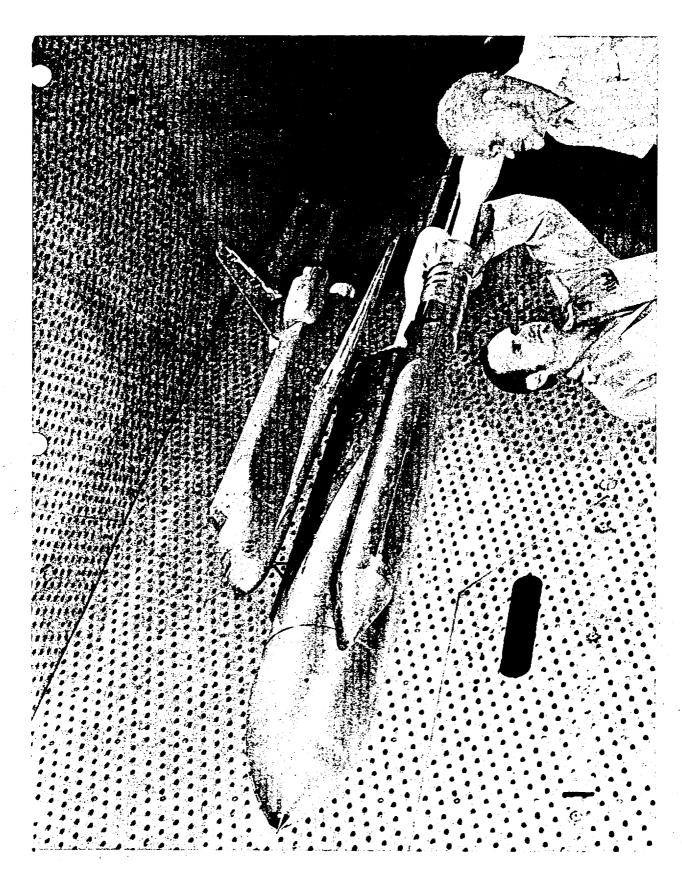
c. Separation Motors and Turbine Exhaust Figure 9. (Continued)


DESCRIPTION	TAPS	TTF Om	40
FUD FAIRIUG-STATEMS TODUEL	5	2 केट (7 50 5
CEUTER SECTION - UP TO REAR ATTACH RING-OF SYSTEMS TOUNER	٩	८५७७	2314
AFT ATTACH EINE	< <u>-</u>	てろいち	5518
CONTER SCOTION - AFT OF ATTACH RING - OF SYSTEMS TONNEL	٩	2327	2550
(TAP 2332 DELETED)	2	2331	८३३३
CEAR SEPARATION THRUSTORS - (TAP 2334, 2336, 2342, 2344, 2347, 2349 2355 DELETED)	160	2335	2556
APU TUEBINE EXHAUST	3	Z 357	2354

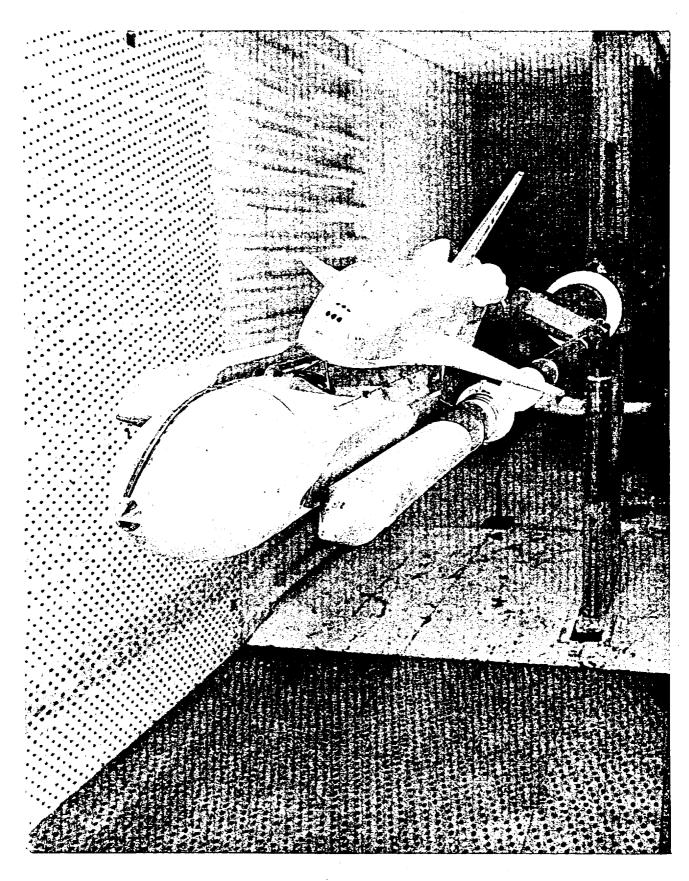
2:43


d. SRB Protuberance Pressures Summary Figure 9. (Concluded)

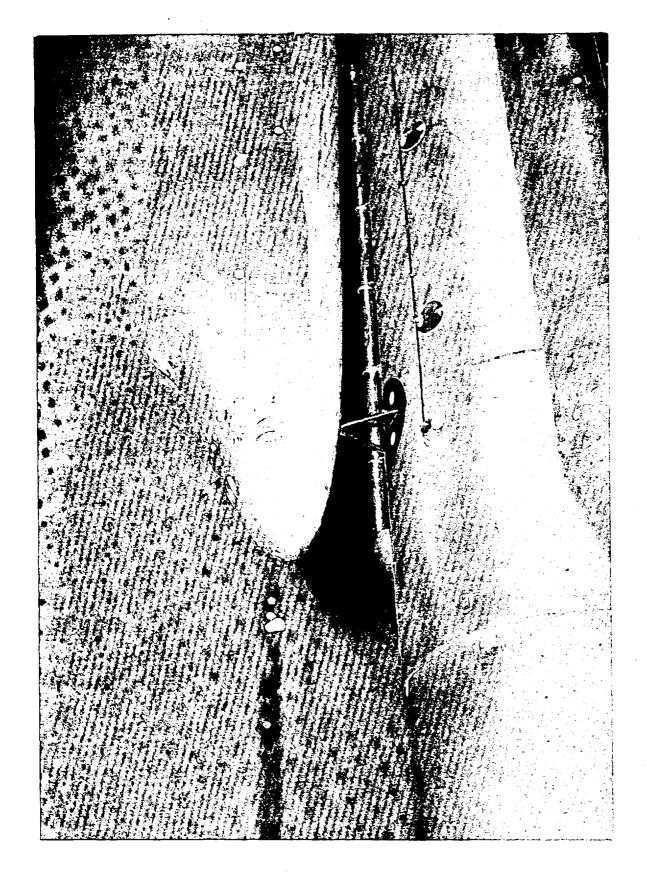
a. First Entry (Straight Sting) Figure 10. Model Installation in the AEDC 16T

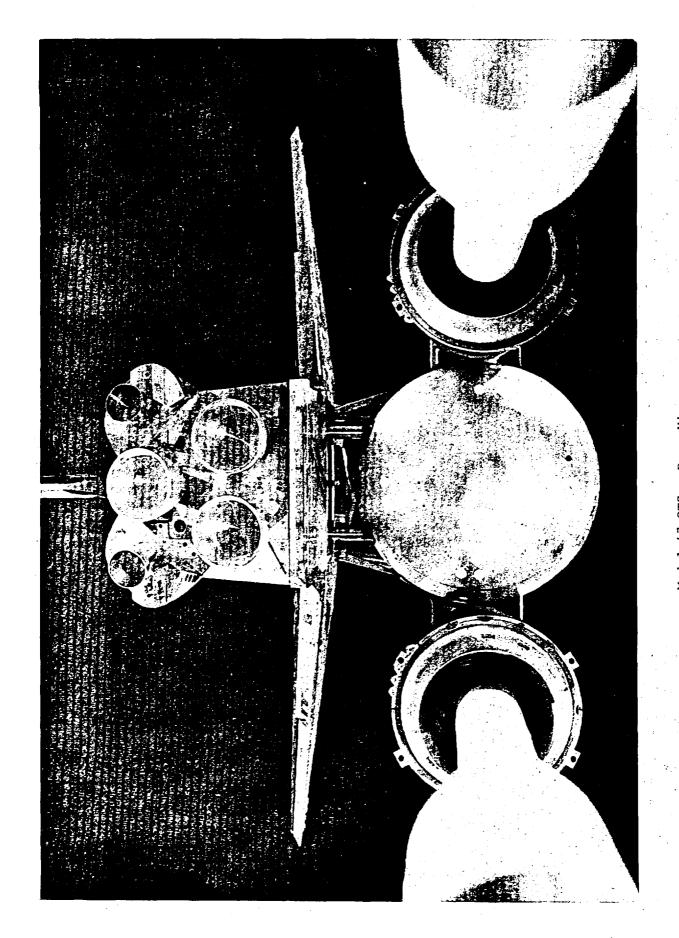


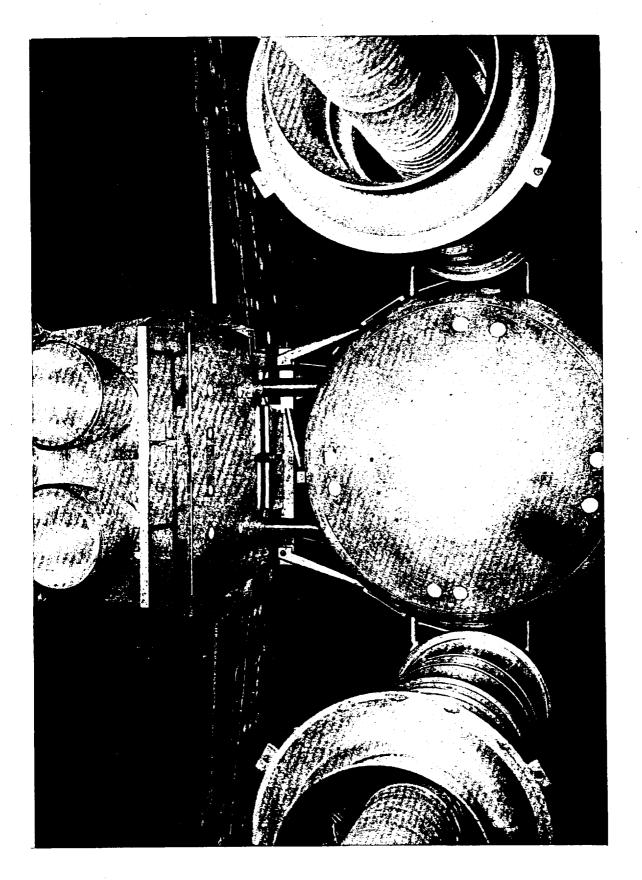
b. Second Entry (Hi-Pitch Sting)
 Figure 10. (Concluded)



a. First entry installation Figure 11. Model Photographs

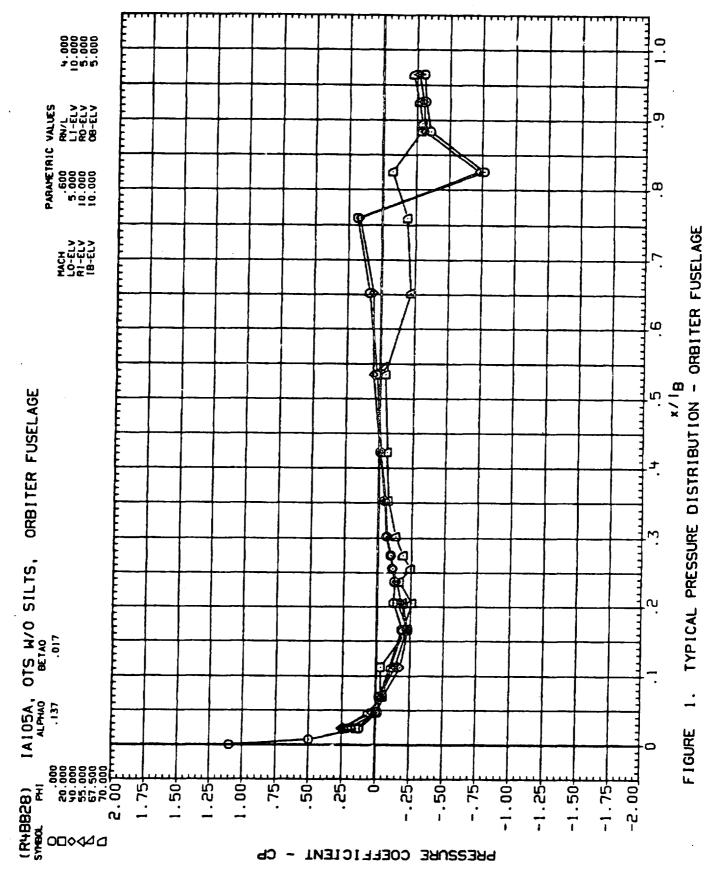

b. Second Entry Installation Figure 11. Model Photographs

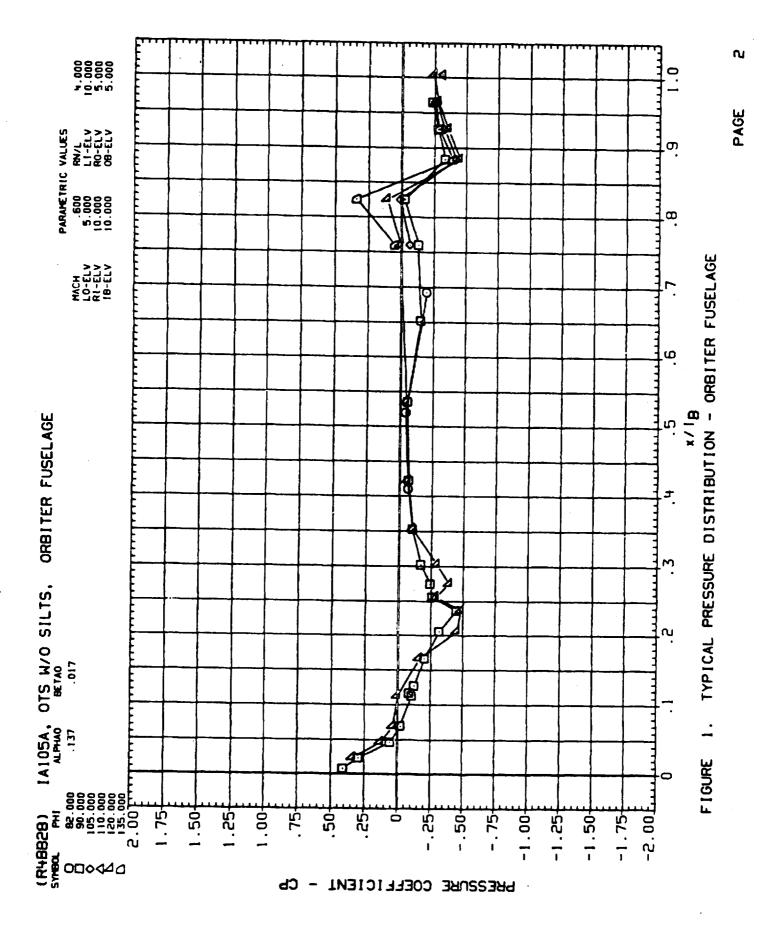

d. Model 47-0TS - Rear Quarter View Figure 11. Model Photographs

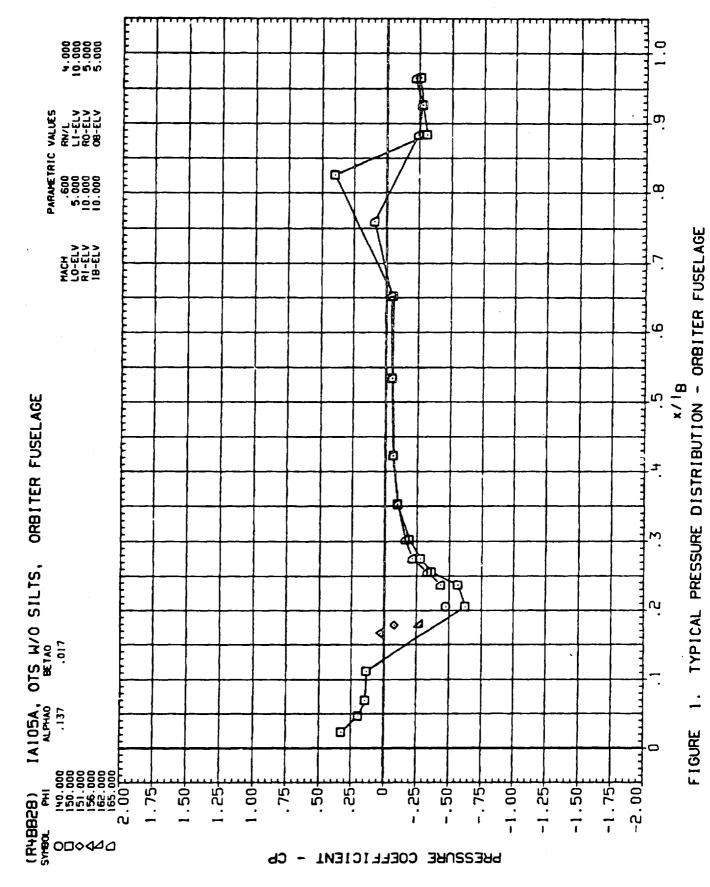


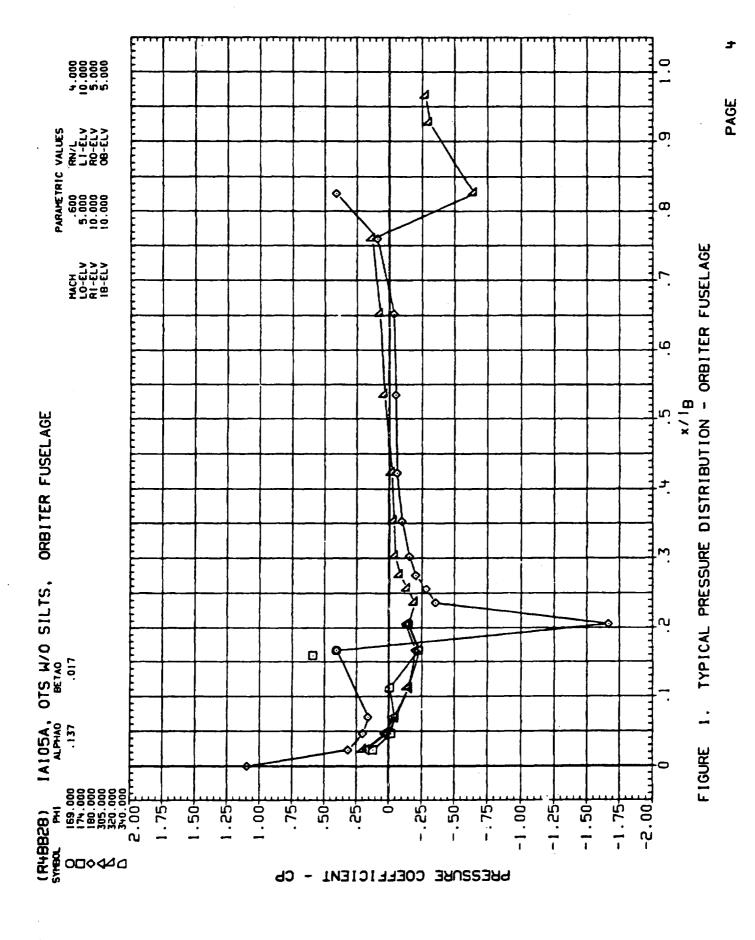
e. Model 47-OTS - Front View Figure 11. Model Photographs

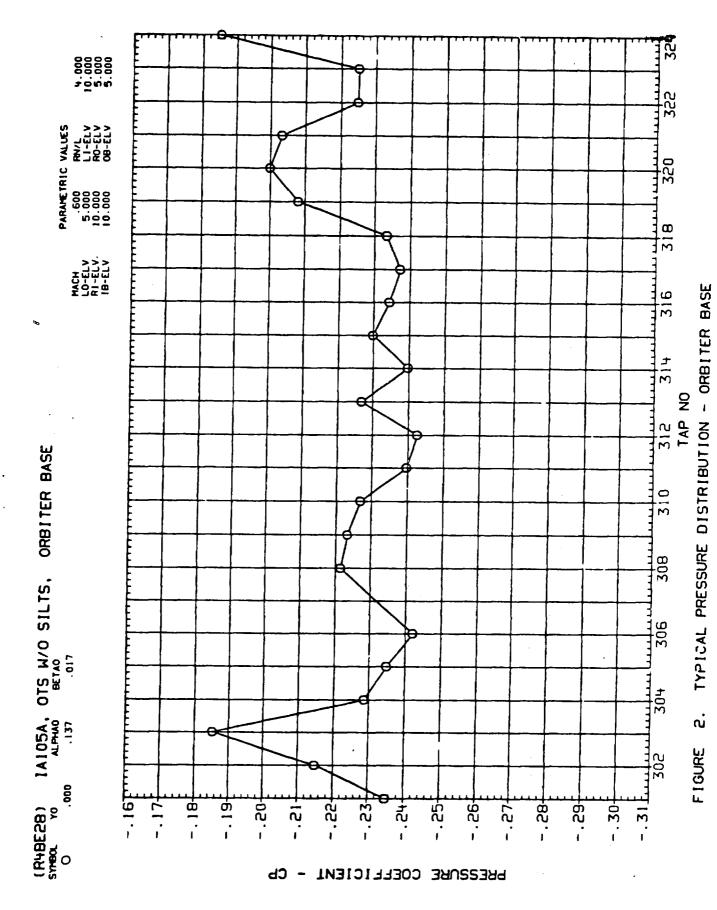
f. Model 47-0TS - Forward Support Detail Figure 11. Model Photographs

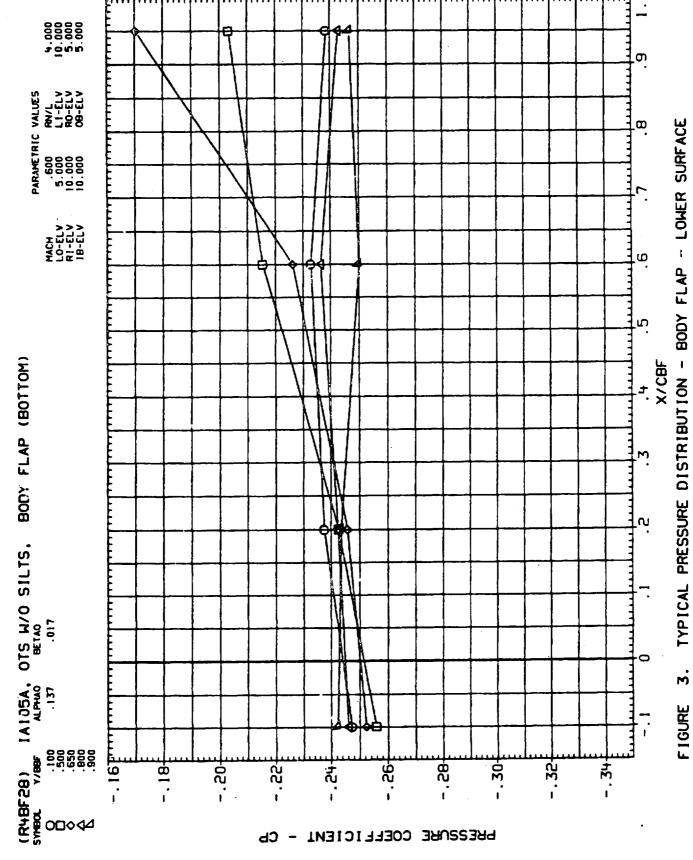

h. Model 47-0TS - Aft Attach Structure Detail Figure 11. Model Photographs

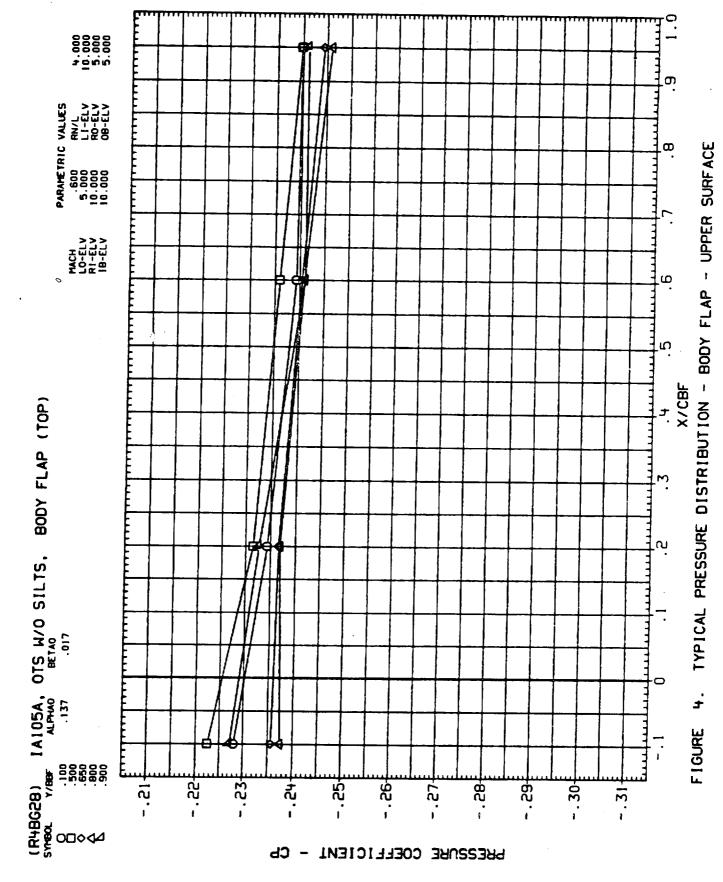

DATA FIGURES

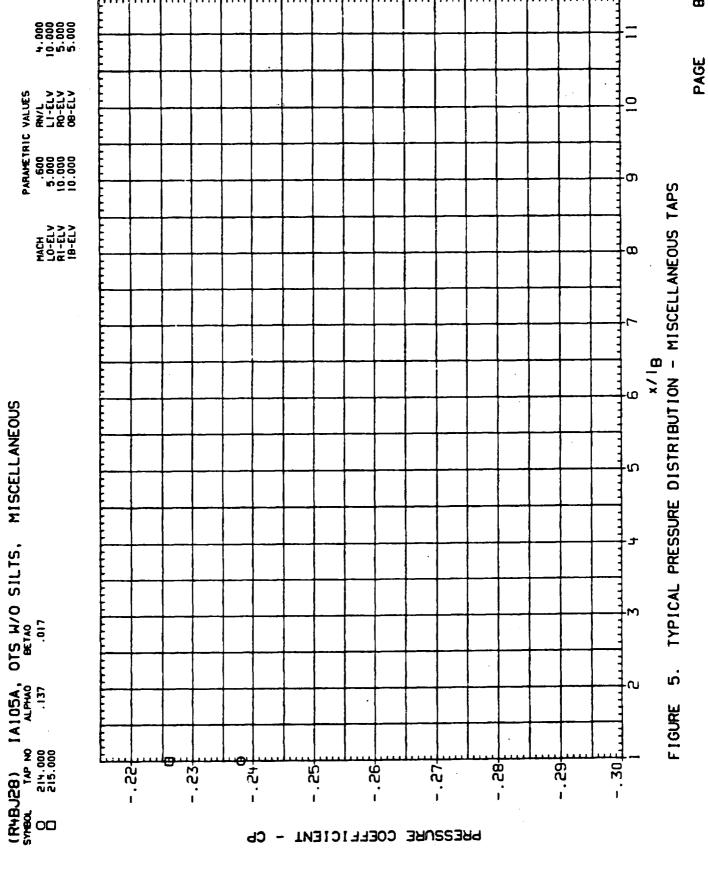

(SAMPLE PRESSURE PLOTS)

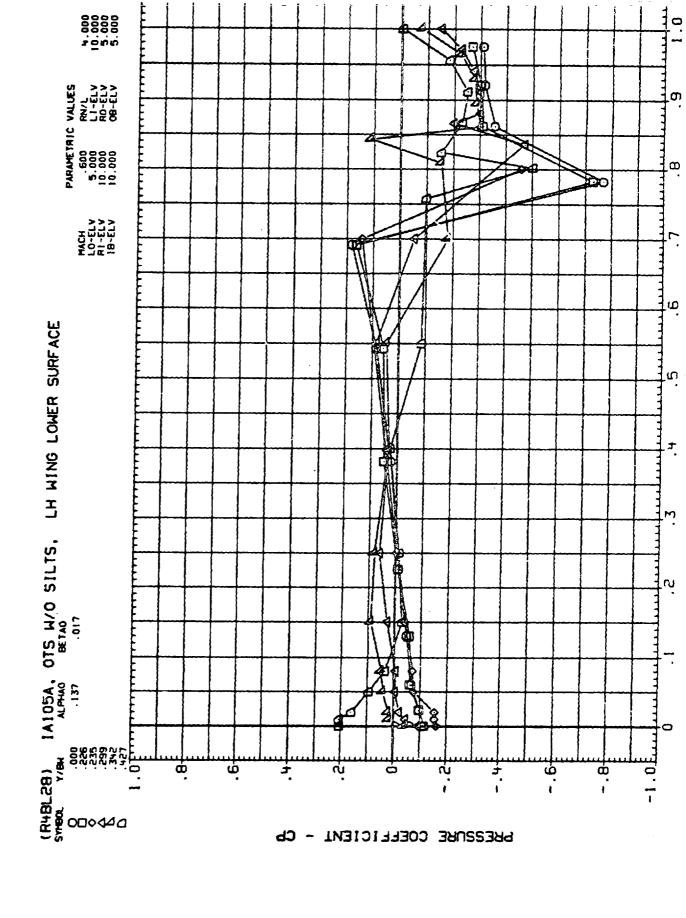

Tabulations of plotted data figures may be found in Volumes II and III (microfiche only), or are available from DMS on request.

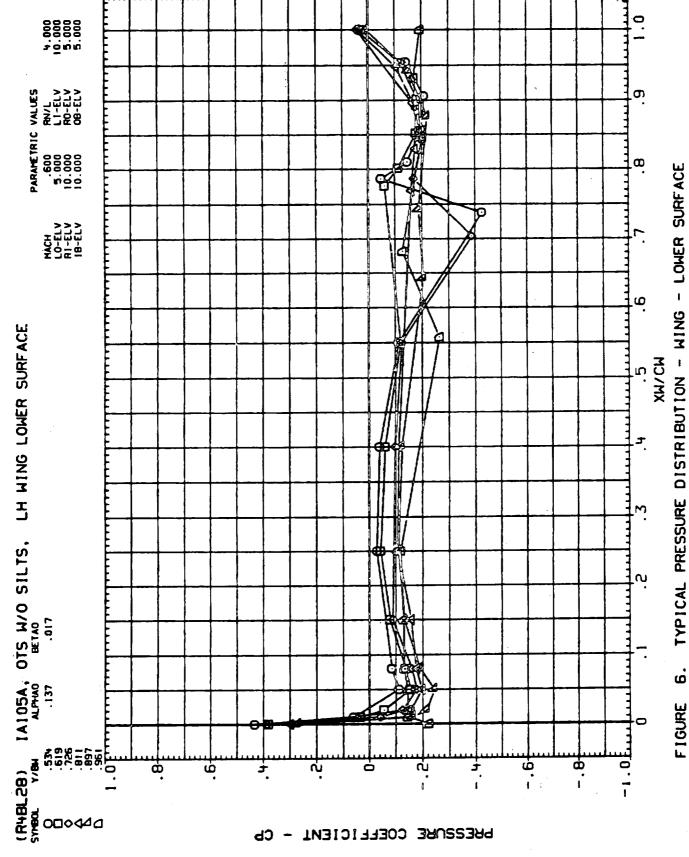

(THIS PAGE INTENTIONALLY LEFT BLANK)

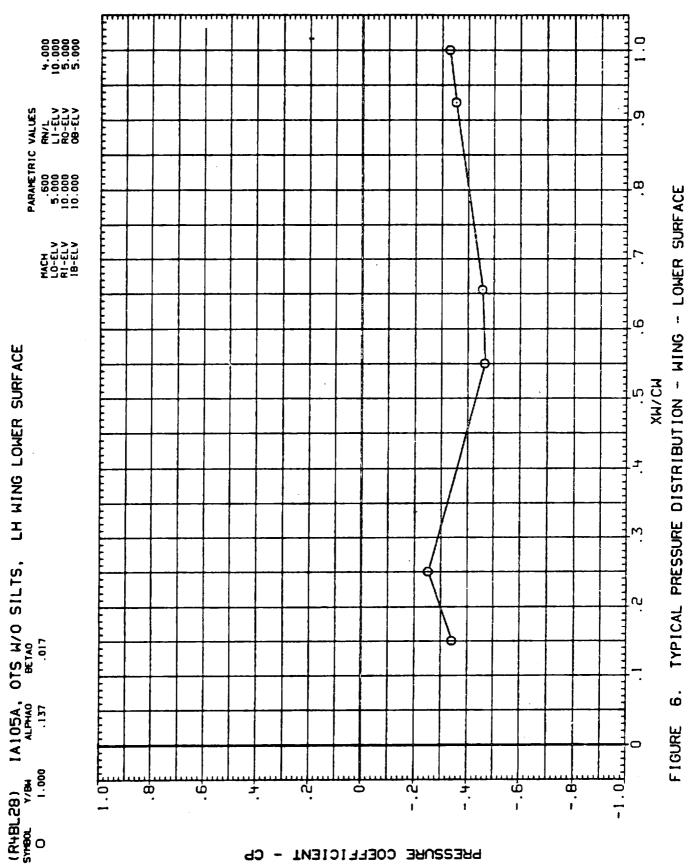


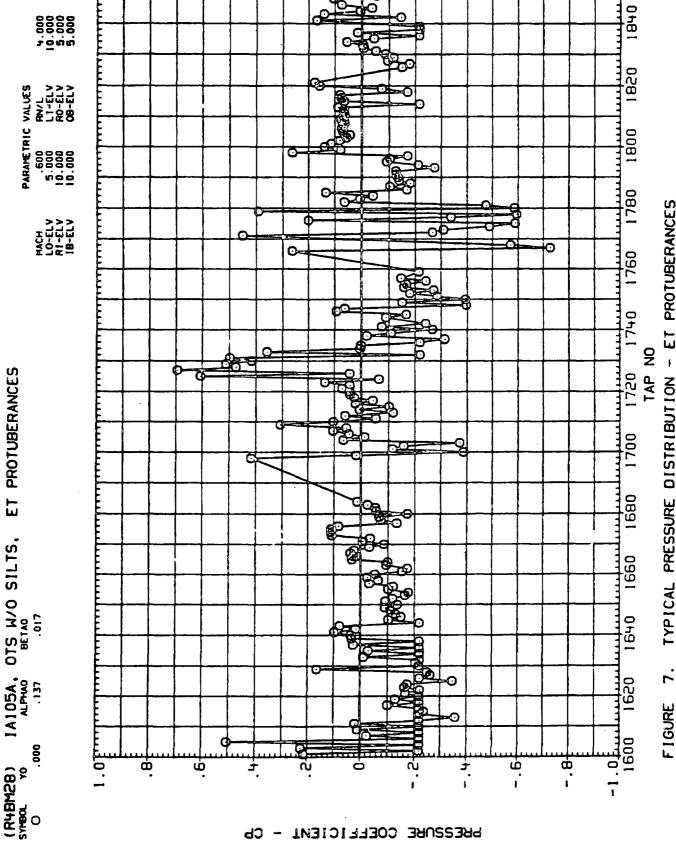


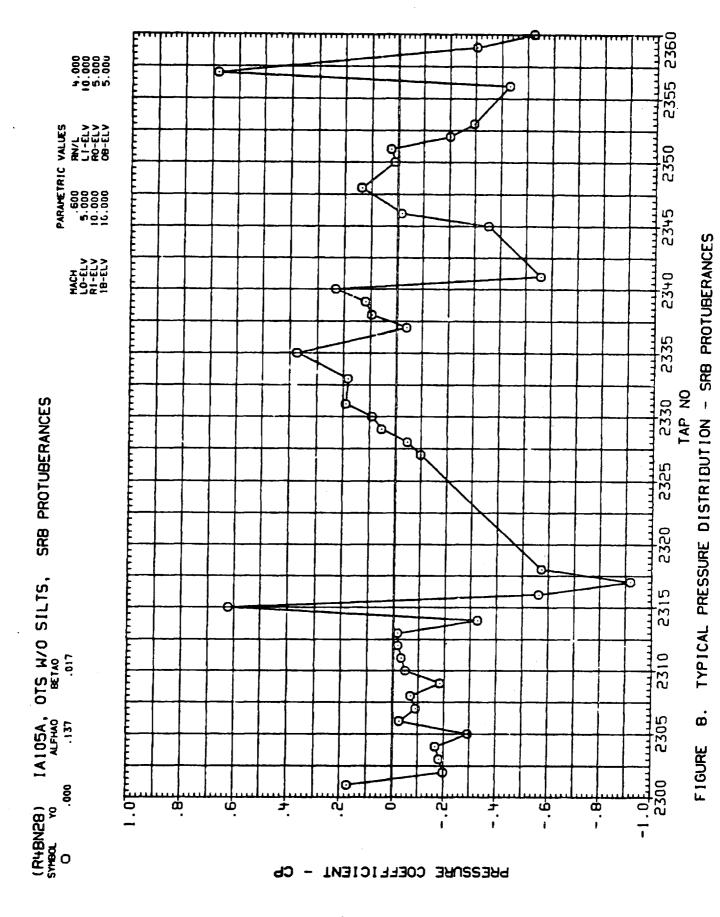


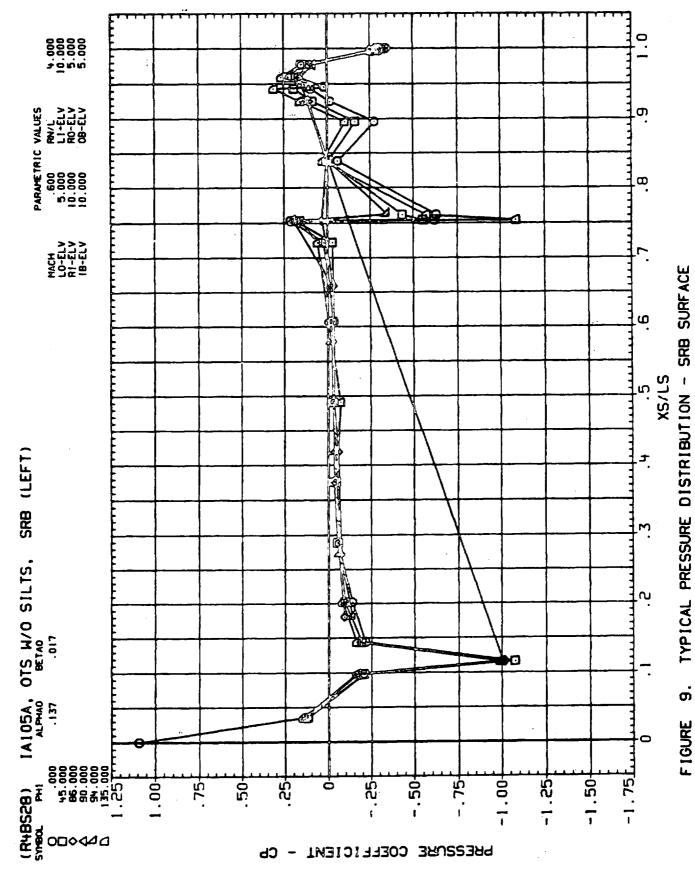

ဖ



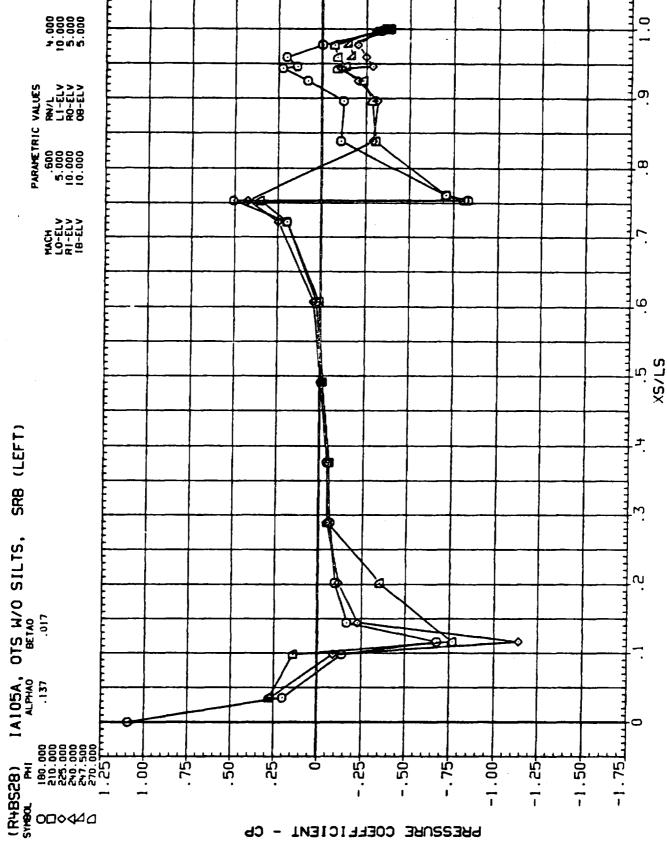
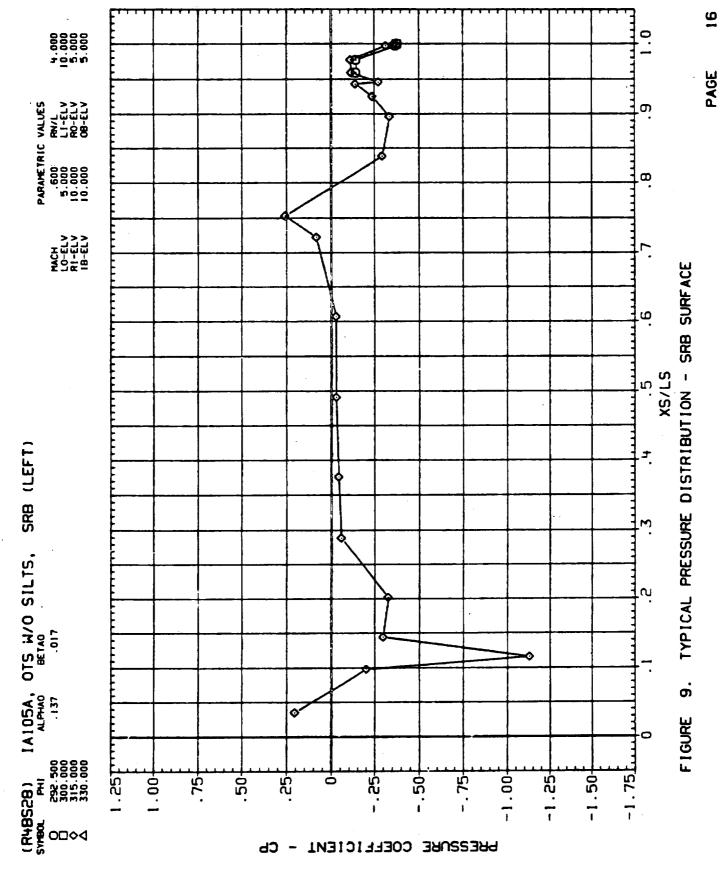
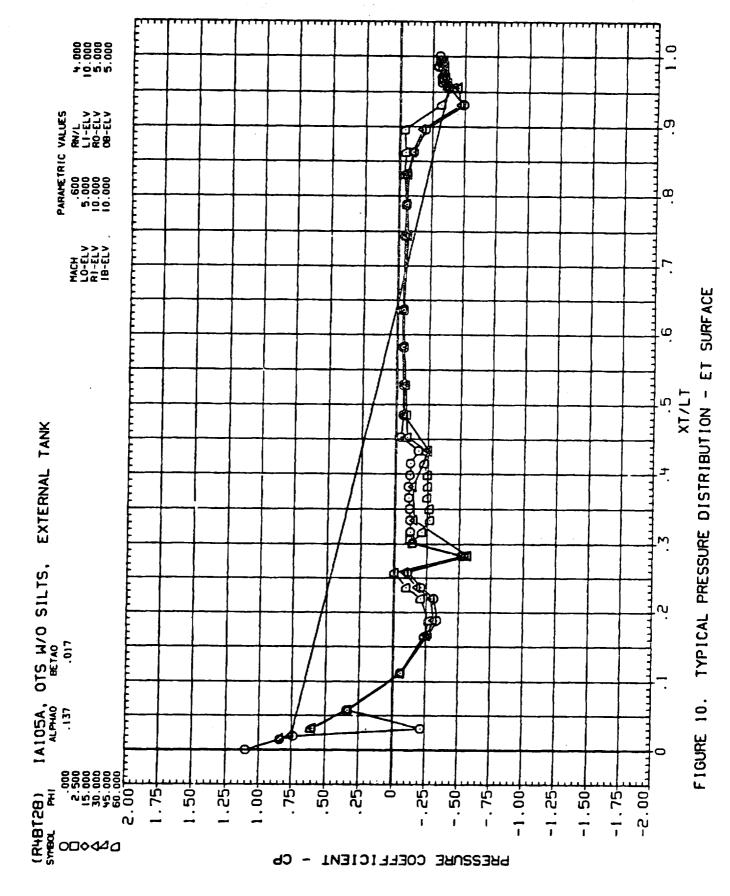


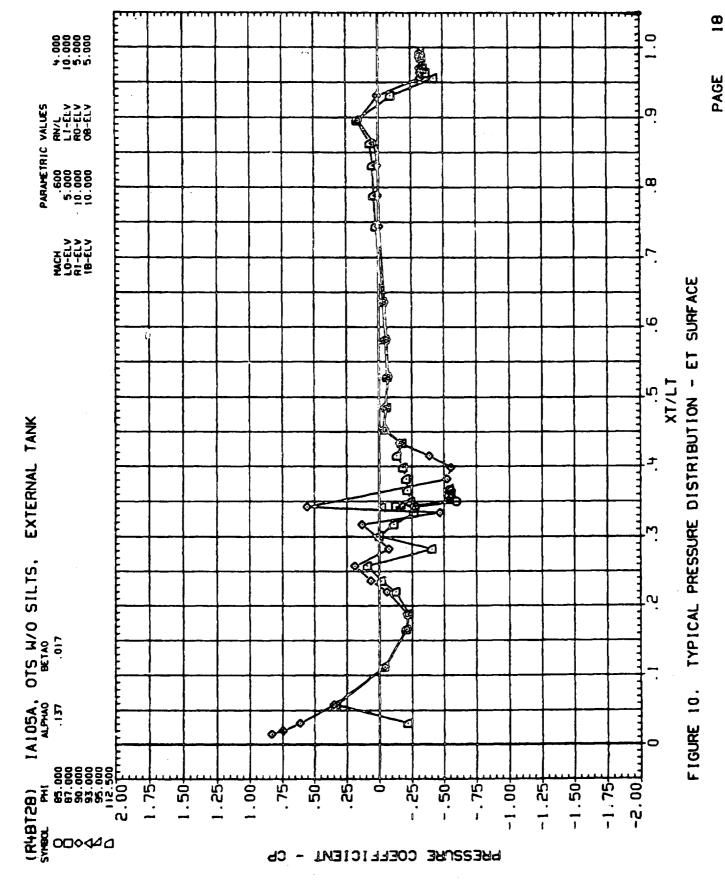


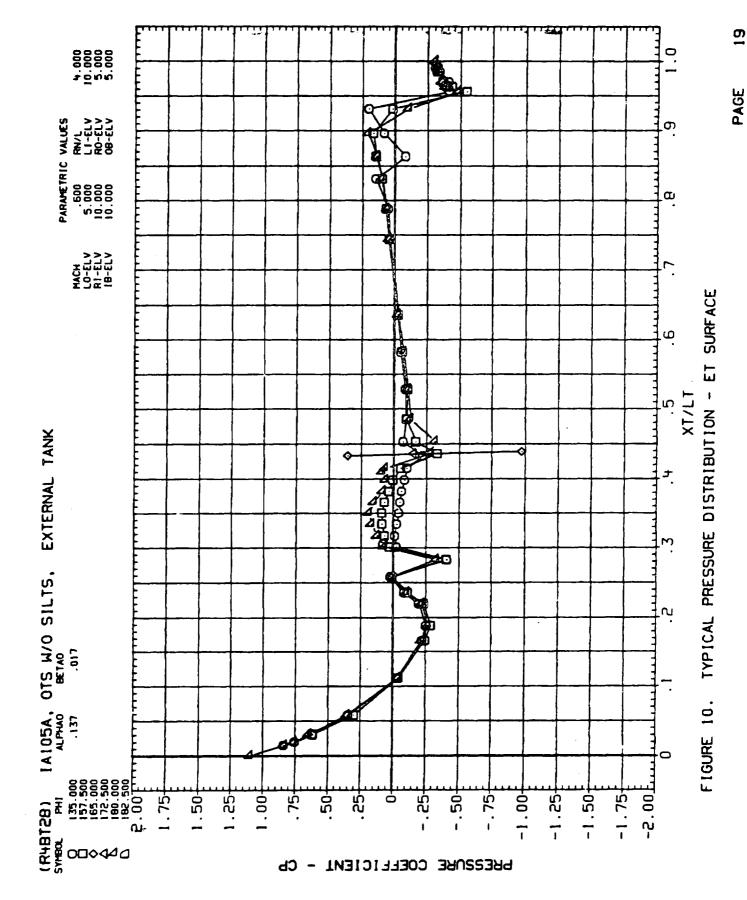


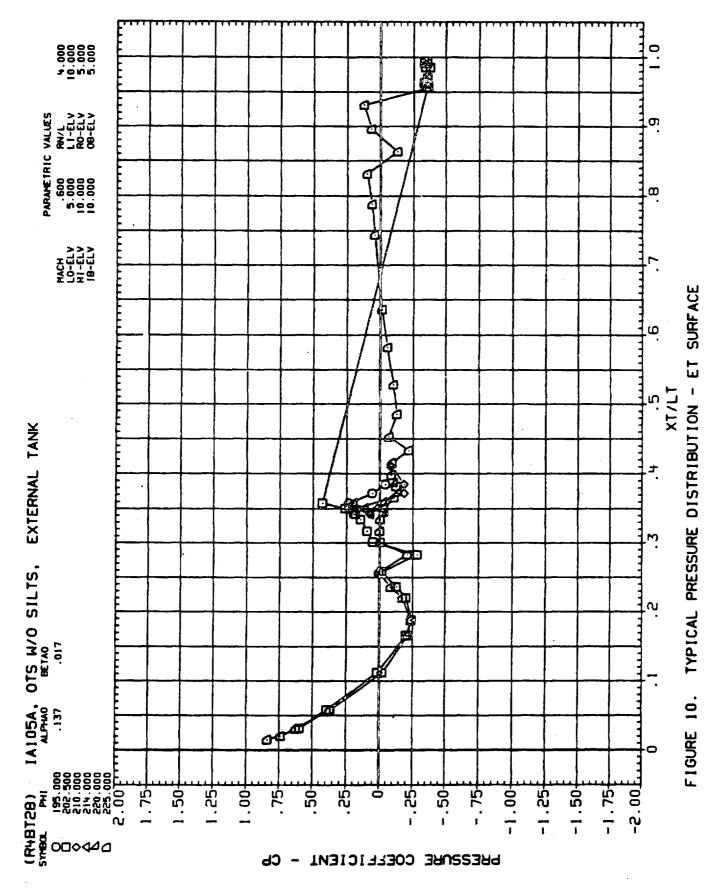

PAGE

TYPICAL PRESSURE DISTRIBUTION - ET PROTUBERANCES

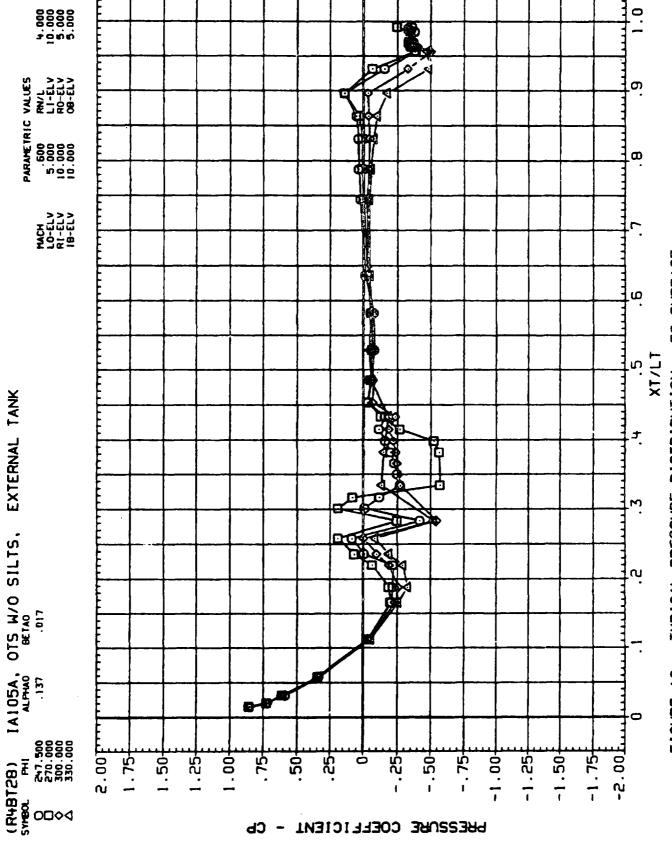
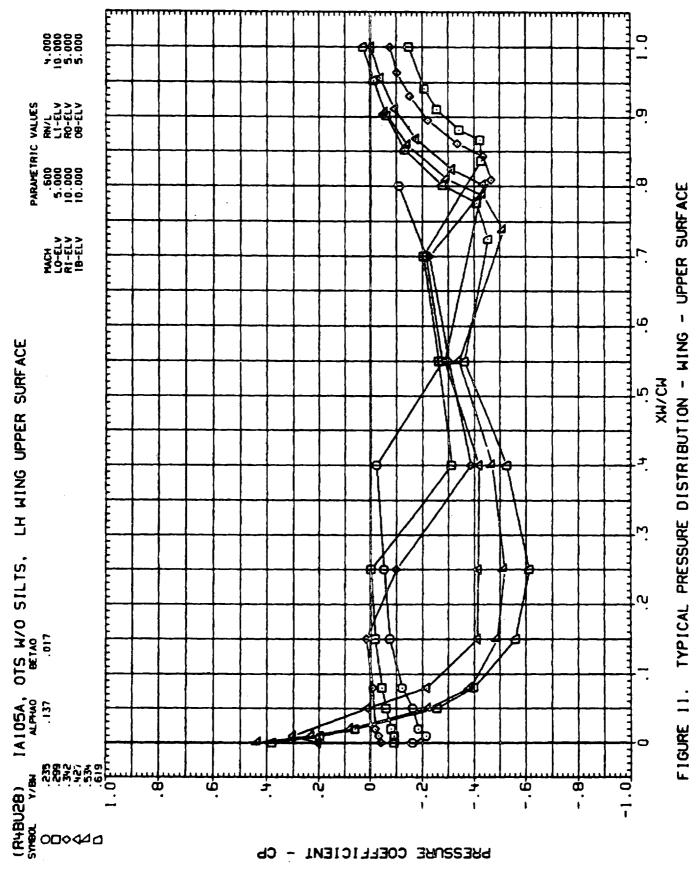
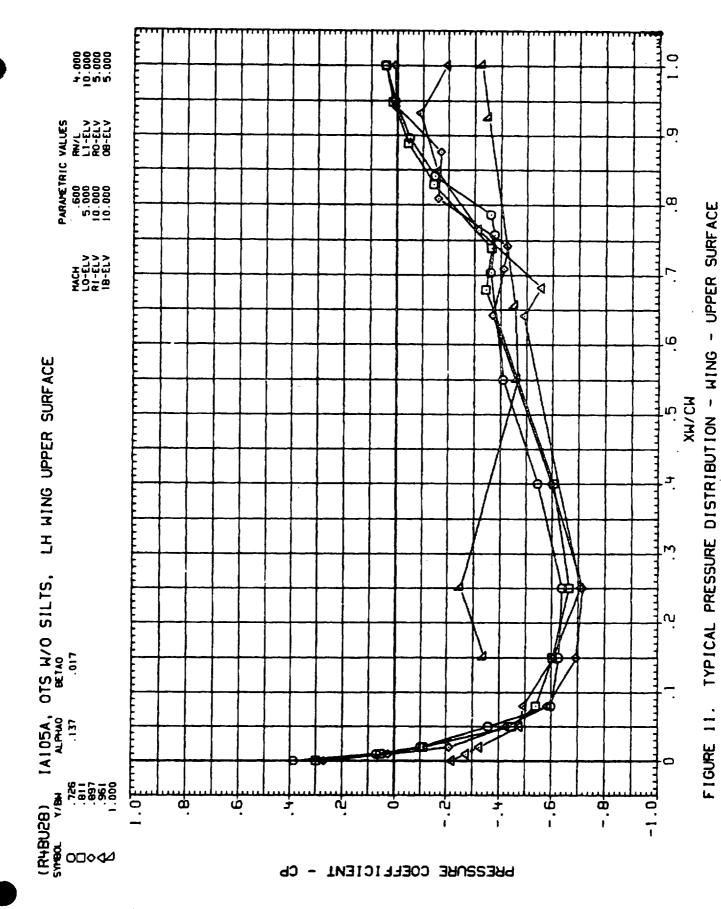
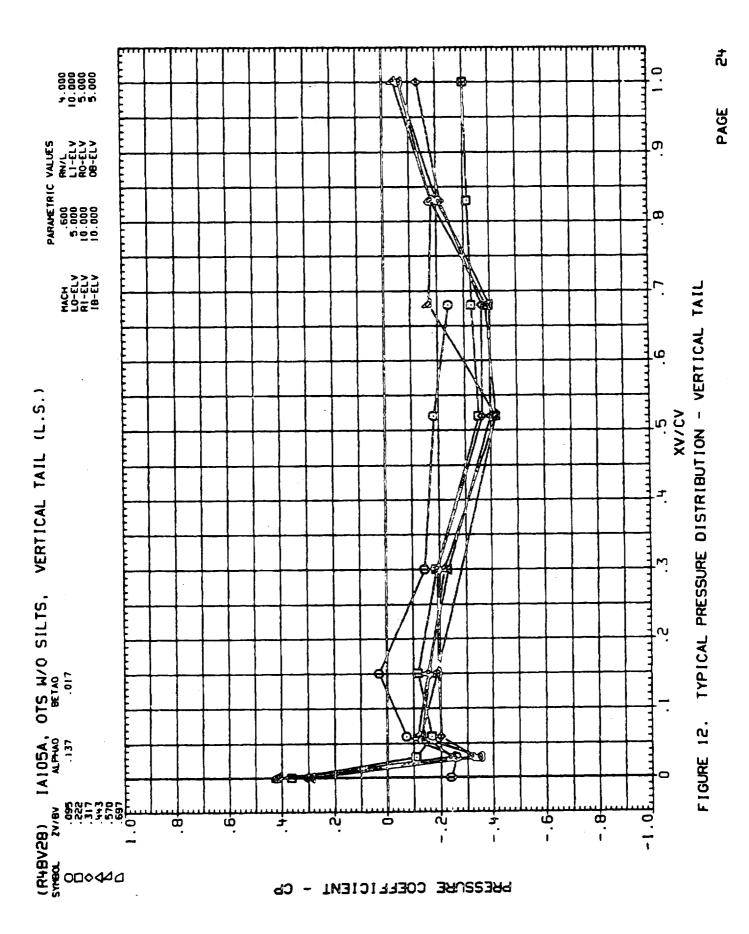




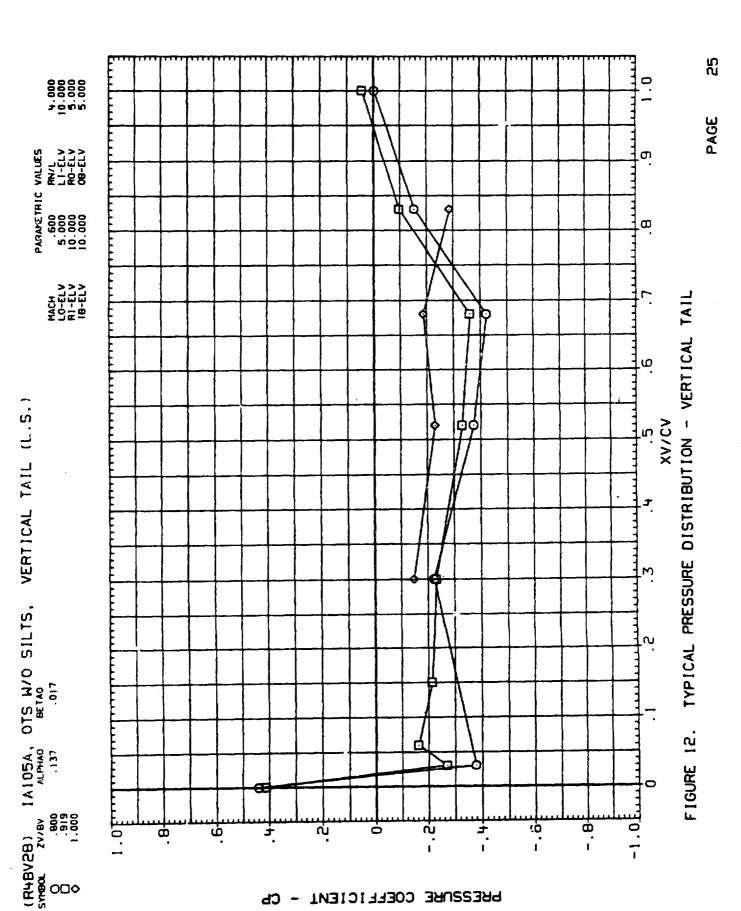

FIGURE 9. TYPICAL PRESSURE DISTRIBUTION - SRB SURFACE





PAGE


FIGURE 10. TYPICAL PRESSURE DISTRIBUTION - ET SURFACE

PRESSURE COEFFICIENT - CP

APPENDIX

TABULATED PRESSURE SOURCE DATA
(MICROFICHE ONLY)